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OUTLINE

Previously, we have focused on necessary conditions for extrema of various
functionals some with isoperimetric constraints. The main results include the
following equivalent statements:

• The 1st variation of the functional at an extremal in any direction vanishes.

• The Euler-Lagrange system of differential equations is satisfied.

In this chapter, we will discuss

Conditions about whether an extremal is a (local) minimum or maximum,

which is the counterpart of 2nd Derivative Test in Calculus.
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§10.1. A quick review of 2nd Derivative Test from Calculus

Let f : Ω→ R be smooth where Ω ⊂ Rn with n = 2 (simple but relevant).

Given X = (x1, x2), η = (η1, η2), Taylor’s Theorem implies, for ε near zero,

f(X + εη) = f(X) + ε(fx1(X)η1 + fx2(X)η2)

+
ε2

2!

(
fx1x1(X)η21 + 2fx1x2(X)η1η2 + fx2x2(X)η22

)
+O(ε3)

= f(X) + ε∇f(X) · η +
ε2

2!
ηH(X)ηT +O(ε3),

where ∇f = (fx1, fx2) is the gradient vector of f and

H =

(
fx1x1 fx1x2
fx1x2 fx2x2

)
is the (symmetric) Hessian matrix of f .
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If X = (x1, x2) is a critical point of f , then ∇f(X) = 0, and hence,

f(X + εη)− f(X) =
ε2

2!
ηH(X)ηT +O(ε3) =

ε2

2!

(
ηH(X)ηT +O(ε)

)
.

In particular, if f(X) is a local minimum, then ηH(X)ηT ≥ 0 for η 6= 0.

In this case, the condition that ηH(X)ηT ≥ 0 for η 6= 0 is equivalent to

∆ = fx1x1(X)fx2x2(X)− f2x1x2(X) ≥ 0 and fx1x1(X) ≥ 0.

This reminds one the 2D test from Calculus.

It is natural to expect something “similar” for Calculus of Variations.

4



§10.2. The 2nd variation of a functional at an extremal

1. Derivation of the 2nd variation.

Consider the variational problem

J(y) =

∫ x1

x0

f(x, y, y′)dx

with fixed boundary conditions y(x0) = y0 and y(x1) = y1.

Suppose y = y(x) is an extremal of J in S, i.e., for all η with η(x0) = η(x1) = 0,

δJ(η, y) =

∫ x1

x0

(
ηfy + η′fy′

)
dx =

∫ x1

x0

η

(
fy −

d

dx
fy′

)
dx = 0.

Question: Is the extremal y = y(x) a local minimum or maximum?

We need to expand J(y + εη) with higher order terms in ε.
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Step 1. Expansion of the integrand f(x; y + εη, y′ + εη′):

f(x, y + εη, y′ + εη′) = f(x, y, y′) + ε
(
fyη + fy′η

′)
+
ε2

2!

(
fyyη

2 + 2fyy′ηη
′ + fy′y′η

′2)+O(ε3).

Step 2. Expansion J(y + εη):

Integrate the expansion in Step 1 over [x0, x1] to get

J(y + εη) = J(y) + εδJ(η, y) +
ε2

2!
δ2J(η, y) +O(ε3),

where

δ2J(η, y) =

∫ x1

x0

(
fyyη

2 + 2fyy′ηη
′ + fy′y′η

′2)dx
is the second variation of J at y = y(x) along the direction of η = η(x).
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2. A necessary condition for (local) minimum/maximum

Since y = y(x) is an extremal of J , one has δJ(η, y) = 0, and hence,

J(y + εη)− J(y) =
ε2

2!
δ2J(η, y) +O(ε3) =

ε2

2!

(
δ2J(η, y) +O(ε)

)
.

Immediately, we have

Theorem. (i) If the extremal y = y(x) of J is a local minimum, then

δ2J(η, y) ≥ 0 for all η ∈ H.

(ii) Similarly, a necessary condition for y = y(x) to be a local maximum is that

δ2J(η, y) ≤ 0 for all η ∈ H.

(iii) If δ2J(η, y) changes signs, then J cannot have local minima or maxima.
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Example. Consider the functional

J(y) =

∫ l

0

(y′2 − y2)dx

for some fixed l > 0 with y(0) = y(l) = 0.

A director calculation gives

δ2J(η, y) =

∫ l

0

(η′2 − η2)dx.

It turns out, with η(0) = η(l) = 0, one always

∫ l

0

η2dx ≤ l2

π2

∫ l

0

η′2dx – the so-called Poincare inequality,

and hence,

δ2J(η, y) ≥
(

1− l2

π2

)∫ l

0

η′2dx.
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Case 1. l ≤ π. In this case, δ2J(η, y) ≥ 0 for any η and any y. Therefore, the
necessary condition for a minimum is met for any extremal y = y(x) (so J cannot
have a local maximum). In fact, we will show later on that any extremal y = y(x)
of J is a local minimum.

Case 2. l > π. For an integer n, set ηn(x) = sin nπx
l . Then, ηn(0) = ηn(l) = 0.

Using double angle formula, one evaluates that

δ2J(ηn, y) =

∫ l

0

(η′2n − η2n)dx =

∫ l

0

(n2π2

l2
cos2

nπx

l
− sin2 nπx

l

)
dx =

1

2

n2π2 − l2

l2
.

Thus, for n = 1, δ2J(η1, y) = 1
2
π2−l2
l2

< 0; but for any n with n2π2 > l2,

δ2J(ηn, y) = 1
2
π2−l2
l2

> 0. Therefore, any extremal y = y(x) of J cannot be a local
minimum or local maximum.
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To this end, recall the 2nd variation of J at y along the direction η is

δ2J(η, y) =

∫ x1

x0

(
fyyη

2 + 2fyy′ηη
′ + fy′y′η

′2)dx.
It is, in general, not practical to decide the sign of δ2J(η, y).

In the remaining sections, we will discuss

• simpler but deeper necessary conditions which also motivate sufficient con-
ditions (§10.3 and §10.4); and then,

• a sufficient condition for (local) minima/maxima (§10.5 and §10.6).
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§10.3. The Legendre necessary condition

In this section, for a known extremal y of J , we will discuss the so-called Legendre
necessary conditions for a local minimum and a local maximum.

Need a closer examination of the condition in terms of the 2nd variation.

Step 1. Rewrite integrand of δ2J(η, y) using by-parts: Note that (η2)′ = 2ηη′ and
η(x0) = η(x1) = 0. So∫ x1

x0

2fyy′ηη
′dx =

∫ x1

x0

(η2)′fyy′dx = −
∫ x1

x0

η2
d

dx
fyy′dx,

and hence,

δ2J(η, y) =

∫ x1

x0

[
η2
(
fyy −

d

dx
fyy′

)
+ η′2fy′y′

]
dx.

“Too bad” that one could not rewrite the integral of η′2fy′y′ to convert η′2 to
something with η2 alike. (You may try though.)
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Step 2. Effects of sign of fy′y′ on that of δ2J(η, y) for ALL η:

For definiteness, we now assume y = y(x) is a local minimum so that

δ2J(η, y) =

∫ x1

x0

[
η2
(
fyy −

d

dx
fyy′

)
+ η′2fy′y′

]
dx ≥ 0 for all η ∈ H.

An important observation is that one can

(i) fix a non-zero bound for |η|, but (ii) make |η′| “as large as one wants”.

Intuition: a function that oscillates rapidly such as sin x
γ with γ � 1 might do!

This is actually the case (to be shown soon). Thus, one can choose η so that

“the sign of η′2fy′y′ dominates the sign of the integrand of δ2J(η, y)”;

in particular, to have δ2J(η, y) ≥ 0 for ALL η, it is necessary that fy′y′ ≥ 0.
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Theorem 10.3.1 (Legendre) If y = y(x) is a local minimum of J in S, then

fy′y′(x, y(x), y′(x)) ≥ 0 for all x ∈ [x0, x1].

Proof. Prove by contradiction. Suppose, on the contrary, that fy′y′(c) = p < 0 at
some c ∈ [x0, x1]. For simplicity, we assume c ∈ (x0, x1). By continuity, there is an
γ > 0 so that [c− γ, c+ γ] ⊂ [x0, x1] and fy′y′ < p/2 for all x ∈ (c− γ, c+ γ).

Let k > 2 be an integer and choose η as

η(x) =

{
sin2k π(x−c)

γ , if x ∈ [c− γ, c+ γ]

0, if x 6∈ [c− γ, c+ γ].

One then has

η′(x) =

{
2kπ
γ sin2k−1 π(x−c)

γ cos π(x−c)γ , if x ∈ [c− γ, c+ γ]

0, if x 6∈ [c− γ, c+ γ].

[Note: the specific choice of the argument π(x−c)
γ for the sine function is to make

sure that η(c− γ) = η(c+ γ) = 0 and 2k ≥ 4 insures η′(c± γ) = η′′(c± γ) = 0.]
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Now, since fy′y′ < p/2 < 0 for x ∈ (c− γ, c+ γ), one has

∫ x1

x0

η′2fy′y′dx =

∫ c+γ

c−γ
η′2fy′y′dx

≤ p

2

4k2π2

γ2

∫ c+γ

c−γ
sin4k−2 π(x− c)

γ
cos2

π(x− c)
γ

dx

=
p

2

4k2π2

γ2
γ

π

∫ π

−π
sin4k−2 u cos2 udu = 2k2L0π

p

γ
,

where L0 =
∫ π
−π sin4k−2 u cos2 udu > 0 is a fixed constant.

Note that the other term in the integrand of δ2J(η, y) is bounded independent
of γ > 0. Thus, if we take γ > 0 small enough,∫ x1

x0

η′2fy′y′dx ≤ 2k2L0π
p

γ
< 0

can be as negative as one wants; in particular, one can have δ2J(η, y) < 0. This is
a contradiction. We thus complete the proof.
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Example 1. Consider the functional

J(y) =

∫ 1

−1
x
√

1 + y′2dx

with y(−1) = y(1) = 1.

(It can be checked that y(x) = 1 is the only extremal.)

Now, one calculates that

fy′y′(x, y(x), y′(x)) =
x

(1 + y′2)3/2
,

which changes signs for x ∈ [−1, 1].

By Legendre’s Theorem, this problem has no local minima nor local maxima.
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Example 2. Consider the functional from the previous section

J(y) =

∫ l

0

(y′2 − y2)dx

for l > 0 with y(0) = y(l) = 0.

It follows from f = y′2 − y2 that fy′y′ = 2 > 0 so the Legendre necessary
condition for a local minimum is met.

(i) J cannot have a local maximum, which would require fy′y′ ≤ 0;

(ii) Although the Legendre necessary condition for local minima is met but we
already knew from the example in last section that J has a local minimum if l ≤ π
but has NO minima if l > π.

Remark. If Legendre necessary condition for a local minimum is not met, then the
extremal is not a local minimum.

If the necessary condition is met, then one cannot claim the extremal is a local
minimum yet – more work is needed.
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§10.4. The Jacobi necessary condition

A quick summary for the previous discussion for local minima/maxima:

The starting point is the expansion

J(y + εη) = J(y) + εδJ(η, y) +
ε2

2!
δ2J(η, y) +O(ε3),

where δJ(η, y) and δ2J(η, y) are the 1st and 2nd variation of J at y = y(x) along
the direction η = η(x), respectively.

If y = y(x) is an extremal, then δJ(η, y) = 0 for all η, and hence,

(∗) J(y + εη)− J(y) =
ε2

2!

(
δ2J(η, y) +O(ε)

)
.

In particular, if y = y(x) is a local minimum, then δ2J(η, y) ≥ 0 for all η.

The Legendre necessary condition is simpler but relies on that

a bounded function that oscillates rapidly can have “large” derivatives.
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Recall that

δ2J(η, y) =

∫ x1

x0

(
fyyη

2 + 2fyy′ηη
′ + fy′y′η

′2) dx
=

∫ x1

x0

(
η2
(
fyy −

d

dx
fyy′

)
+ fy′y′η

′2
)
dx.

The Legendre necessary condition says one can choose η so that fy′y′η
′2 “dominates”

the integrand so long as fy′y′ 6= 0. In particular,

δ2J(η, y) ≥ 0 for all η =⇒ fy′y′ ≥ 0 for all x ∈ [x0, x1].

Thus, a necessary condition for a local minimum is that fy′y′ ≥ 0 for x ∈ [x0, x1].

It is clear that fy′y′ ≥ 0 for x ∈ [x0, x1] does not imply δ2J(η, y) ≥ 0 for all η.
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There was an excellent question from the class during the last lecture:

Can |η| be made as large as we want while keeping |η′| bounded?

The answer is NO since, for any x, there is xc ∈ [x0, x] such that

η(x)− η(x0) = η′(xc)(x− x0), and hence, |η(x)| ≤ |η′(xc)|(x1 − x0).

What would happen if the answer were YES? One would get that

δ2J(η, y) ≥ 0 for all η =⇒ fyy −
d

dx
fyy′ ≥ 0 for x ∈ [x0, x1], and hence,

δ2J(η, y) ≥ 0 for all η ⇐⇒ fy′y′ ≥ 0 and fyy −
d

dx
fyy′ ≥ 0 for x ∈ [x0, x1].

“Too bad” the answer to that question is NO!!! That means we have to work
harder to find SOMETHING so that, more or less,

δ2J(η, y) ≥ 0 for all η ⇐⇒ fy′y′ ≥ 0 for x ∈ [x0, x1] + SOMETHING.

Luckily Jacobi did this for us brilliantly, and we will turn to it now.
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For an extremal y = y(x) of J , for easy of notation, we denote

p(x) = fy′y′(x, y(x), y′(x)) and q(x) = fyy −
d

dx
fyy′.

Then

δ2J(η, y) =

∫ x1

x0

(
p(x)η′2 + q(x)η2

)
dx.

• Jacobi’s brilliant idea starts from the observation that, for ANY smooth function
w = w(x), one has ∫ x1

x0

(wη2)′dx = 0.

Thus, noticing that (wη2)′ = 2wηη′ + w′η2,

δ2J(η, y) =

∫ x1

x0

(
pη′2 + 2wηη′ + (w′ + q)η2

)
dx.

For y = y(x) to be a minimum, we know p(x) ≥ 0 for x ∈ [x0, x1]. Let’s assume
that the strong Legendre necessary condition; that is, p(x) > 0 for x ∈ [x0, x1].
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Then, the integrand above can be rewritten as

pη′2 + 2wηη′ + (w′ + q)η2 = p
(
η′2 + 2

w

p
ηη′ +

w2

p2
η2
)

+
(
w′ + q − w

2

p

)
η2

= p
(
η′ +

w

p
η
)2

+
(
w′ + q − w

2

p

)
η2.

Another observation: If one can find a function w = w(x) so that

(R): w′ + q(x)− w2

p(x)
= 0 for x ∈ [x0, x1],

then δ2J(η, y) =

∫ x1

x0

p(x)

(
η′ +

w

p
η

)2

dx ≥ 0 for any η since p(x) > 0.

Furthermore, in this case,

δ2J(η, y) = 0 ⇐⇒ η′ +
w

p
η = 0 ⇐⇒ η(x) = 0.

The latter follows from uniqueness of solutions of initial value problem and η(x0) = 0.
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Definition. The 2nd variation δ2J(η, y) is called positive definite if δ2J(η, y) > 0 for
η 6= 0 and η ∈ H.

Immediately, if p(x) = fy′y′ > 0 and the ODE (R) has a solution w = w(x) for
x ∈ [x0, x1], then δ2J(η, y) is positive definite.

Intuitively, if δ2J(η, y) is positive definite, then y = y(x) is a local minimum.
We know this is the case in calculus (for finite-dimensional problem). So the ODE
(R) is the key. The equation is called a Riccati Equation. It is a 1st order but
nonlinear so one does not know if it has a solution defined for x ∈ [x0, x1].

• A standard technique for study of the Riccati Equation (R) is to covert this
nonlinear 1st order ODE to a 2nd order linear system as follows.

Introduce u = u(x) for x ∈ [x0, x1] through

w(x) = −p(x)u′(x)

u(x)
or u(x) = u0e

−
∫ x
x0

w(z)
p(z)

dz
for some u0.

[The minus sign might be missed in the book.]
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Then the nonlinear 1st order Riccati equation

(R) : w′ + q(x)− w2

p(x)
= 0 for x ∈ [x0, x1]

is transformed to the 2nd order linear ODE (called the Jacobi Accessory Equation)

(J) : (p(x)u′)′ − q(x)u = 0 for x ∈ [x0, x1].

We do know that any solution of the linear ODE is always defined for all
x ∈ [x0, x1] as long as p(x) > 0 and q(x) are continuous for x ∈ [x0, x1].

But, to transform back to w(x) from u(x), one sees that u(x) cannot be zero
for any x ∈ [x0, x1]. We do not know if that is the case for solutions of equation
(J) in general.

The good news is we can have a closer look at this issue since u satisfies a linear
ODE, and we will do now.
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Recall the 2nd order linear equation (J) always has a general solution of the form

uc(x) = c1u1(x) + c2u2(x),

where u1(x) and u2(x) are linearly independent solutions of (J).

To state the result on whether or not there is a nowhere vanishing solution u(x)
of (J), an important concept is needed.

We say x∗ 6= x0 is a conjugate point to x0 if the equation (J) has a non-trivial
solution u(x) such that u(x0) = u(x∗) = 0.

The key result is

Theorem. Suppose p(x) > 0 and there are no conjugate points to x0 in (x0, x1].
Then the Jacobi Accessory Equation (J) has a solution u = u(x) such that u(x) 6= 0
for all x ∈ [x0, x1].

As a consequence, in this case, the Riccati equation will have a solution w(x)
for x ∈ [x0, x1], and hence, δ2J(η, y) is positive definite.
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Example 1. Let h(x) > 0 for x ∈ [x0, x1]. Consider

J(y) =

∫ x1

x0

h(x)y′2dx

with fixed end points.

For any extremal y = y(x), one finds that

p(x) = fy′y′ = 2h(x) > 0 and q(x) = fyy −
d

dx
fyy′ = 0.

Thus, the Jacobi Accessory Equation is (2h(x)u′)′ = 0, which has a general solution

uc(x) = c1

∫ x

x0

h−1(z)dz + c2.

For conjugate points to x0, we are looking for nonzero solutions u(x) with

u(x0) = 0. They are given by c0 = 0 or u(x) = c1

∫ x

x0

h−1(z)dz with c1 6= 0. But
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such a function u(x) does not vanish if x 6= x0. Thus there are no conjugate points
to x0 in (x0, x1]. By the theorem, we claim that δ2J(η, y) is positive definite.

Example 2. Consider again the functional

J(y) =

∫ l

0

(y′2 − y2)dx

for l > 0 with y(0) = y(l) = 0.

It follows that p(x) = fy′y′ = 2 > 0 and q(x) = fyy − d
dxfyy′ = −2. The Jacobi

Accessory Equation is then (pu′)′ − q(x)u = 0 or u′′ + u = 0, which has a general
solution

uc(x) = c1 sinx+ c2 cosx.

Nonzero solutions that vanish at x0 = 0 are u(x) = c1 sinx with c1 6= 0. Note
that u(x) = 0 at x = kπ for any integer k. Thus, if l < π, then there are no
conjugate points to x0 = 0 in [x0, x1] = [0, l], and hence, for any extremal of J , the
second variation is positive definite; if l > π, then π ∈ (0, l] is a conjugate point
to x0 = 0, which is consistent to the known fact that the second variation is not
positive definite.
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Again a quick summary of previous discussions for local minima/maxima:

Given an extremal y = y(x) ∈ S, for any η = η(x) ∈ H and small ε, one has

(∗) J(y + εη)− J(y) =
ε2

2!

[
δ2J(η, y) +O(ε)

]
.

Clear: If y = y(x) is a local minimum, then δ2J(η, y) ≥ 0 for all η.

Guess: If δ2J(η, y) > 0 for all η 6= 0, then y = y(x) is a local minimum.

Recall: δ2J(η, y) =

∫ x1

x0

(
η2
(
fyy −

d

dx
fyy′

)
+ fy′y′η

′2
)
dx.

Legendre: δ2J(η, y) ≥ 0 for all η =⇒ fy′y′ ≥ 0 for x ∈ [x0, x1].

Identify conditions, in addition to fy′y′ > 0, that imply δ2J(η, y) > 0 for η 6= 0.
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Jacobi found, for any w = w(x), one always has

δ2J(η, y) =

∫ x1

x0

[
p
(
η′ +

w

p
η
)2

+
(
w′ + q − w

2

p

)
η2
]
dx,

and hence, if w = w(x) satisfies the nonlinear 1st order Riccati equation

(R) : w′ + q(x)− w2

p(x)
= 0 for x ∈ [x0, x1],

then δ2J(η, y) is positive definite.

With w(x) = −p(x)u′(x)

u(x)
, (R) becomes the Jacobi Accessory Equation

(J) : (p(x)u′)′ − q(x)u = 0 for x ∈ [x0, x1].

If p(x) > 0 and there is no conjugate point to x0 in (x0, x1], then (J) has
solutions with u(x) 6= 0 for x ∈ [x0, x1] so (R) has a solution w = w(x) for
x ∈ [x0, x1], and hence, δ2J(η, y) is positive definite.
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Finally we have the following result that would yield Jacobi Necessary condition
as a corollary.

Theorem. Let f be a smooth function and let y = y(x) be a smooth extremal for
the functional

J(y) =

∫ x1

x0

f(x, y, y′)dx

with fixed end points such that p(x) = fy′y′ > 0 for x ∈ [x0, x1].

I. If δ2J(η, y) is positive definite, then there is no conjugate point to x0 in (x0, x1].

II. If δ2J(η, y) ≥ 0 for all η ∈ H, then there is no conjugate point to x0 in (x0, x1).

Remark. Note that δ2J(0, y) = 0.

Recall: δ2J(η, y) is positive definite if δ2J(η, y) > 0 for all η 6= 0 ∈ H.

The statement that “δ2J(η, y) ≥ 0 for all η ∈ H” allows the possibility that
“δ2J(η, y) = 0 for some η 6= 0 ∈ H”.
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Proof of Statement I.

Step 1. First of all, we show that x = x1 cannot be conjugate to x0. Suppose,
on the contrary, x1 is conjugate to x0. Then there is a function u∗ = u∗(x) 6= 0
with u∗(x0) = u∗(x1) = 0 satisfies (J); that is,

(p(x)u′∗)
′ − q(x)u∗ = 0.

Now, multiply above by u∗ and integrate to get, with an application of integral by
parts,

p(x)u′∗(x)u∗(x)|x1x0 −
∫ x1

x0

p(x)u′2∗ dx−
∫ x1

x0

q(x)u2∗dx = 0

or, δ2J(u∗, y) = 0 for u∗ 6= 0 ∈ H. This contradicts the assumption of I.

Step 2. To show there is no conjugate points to x0 in (x0, x1), one introduces,
for any µ ∈ [0, 1], a new functional in η:

Kµ(η) = µδ2J(η, y) + (1− µ)P (η),

where

P (η) =

∫ x1

x0

η′2dx.
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It is easy to see that the functional P has no conjugate points in (x0, x1] and also
it is easy to see that, for any µ ∈ [0, 1], Kµ(η) is positive definite.

The Jacobi Accessory Equation associated to Kµ is

(J)µ : [(µp(x) + 1− µ)u′]′ − µq(x)u = 0.

We know that µp(x) + 1 − µ > 0 for µ ∈ [0, 1] since p > 0 (by assumption).
Therefore the solution u(x;µ) with u(x0;µ) = 0 and u′(x0;µ) = 1 depends on µ
continuously for x ∈ (x0, x1].

For µ = 0, (J)0 is u′′ = 0, and hence u(x; 0) = x− x0, which has no conjugate
points in (x0, x1).

Suppose, on the contrary, for µ = 1, there is a conjugate point x∗ ∈ (x0, x1],
that is, u(x∗, 1) = 0. One can conclude that there is µ0 ∈ (0, 1) so that the
corresponding solution u(x;µ0) vanishes at x = x1; that is, (J)µ0 has a nonzero
solution u(x;µ0) with u(x0;µ0) = u(x1;µ0) = 0 (particularly, u(x;µ0) 6= 0 ∈ H).
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Multiply u(x;µ0) on (J)µ0 and integrate over [x0, x1] to get∫ x1

x0

(
(µ0p(x) + 1− µ0)u

′2 + µ0q(x)u2
)
dx = 0

or Kµ0(η) = µ0δ
2J(η, y) + (1− µ0)P (η) = 0 with η(x) = u(x;µ0) 6= 0 and η ∈ H.

This contradicts to that δ2J(η, y) > 0 and P (η) > 0 for η 6= 0 ∈ H.

Proof of Statement II. The same procedure in Step 2 works for this case. But Step
1 will not so. Thus one can only conclude that there is no conjugate points in
(x0, x1).

Remark. The following statements are equivalent.

(i) There is no conjugate point to x0 in (x0, x1].

(ii) The solution u = u(x) of the initial value problem

(p(x)u′)′ − q(x)u = 0, u(x0) = 0 and u′(x0) = 1

has no zero in (x0, x1].
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Recall that, If y = y(x) is a local minimum, then δ2J(η, y) ≥ 0 for all η ∈ H.
We now have the Jacobi Necessary Condition as a consequence of Statement II in
the previous theorem.

Corollary. (Jacobi Necessary Condition) Let f be a smooth function and let
y = y(x)) be a smooth extremal for the functional

J(y) =

∫ x1

x0

f(x, y, y′)dx

with fixed end points such that p(x) = fy′y′ > 0 for x ∈ [x0, x1]. If y = y(x) is a
local minimum, then there is no conjugate point to x0 in (x0, x1).

It turns out, under the strong Legendre condition p(x) > 0 for x ∈ [x0, x1],

if there is no conjugate point to x0 in (x0, x1], then y = y(x) is a local minimum.

Note that the difference in the statements: one is the open interval (x0, x1) and
the other is the half-closed interval (x0, x1].
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§10.5. A sufficient condition

A summary of previous discussions for local minima/maxima:

Given an extremal y = y(x) ∈ S, for any η = η(x) ∈ H and small ε, one has

(∗) J(y + εη)− J(y) =
ε2

2!

[
δ2J(η, y) +O(ε)

]
.

Suppose p(x) = fy′y′ > 0 for x ∈ [x0, x1]. Then,

δ2J(η, y) ≥ 0 for all η ∈ H =⇒ No conjugate points to x0 in (x0, x1).

No conjugate points to x0 in (x0, x1] ⇐⇒ δ2J(η, y) is positive definite.

Guess: If δ2J(η, y) is positive definite, then y = y(x) is a local minimum.

This is indeed correct; that is, one has a sufficient condition for local minima,
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Theorem. Let f be a smooth function and let y = y(x) be a smooth extremal for
the functional

J(y) =

∫ x1

x0

f(x, y, y′)dx

with fixed end points such that p(x) = fy′y′ > 0 for x ∈ [x0, x1]. If there is no
conjugate point to x0 in (x0, x1] (or equivalently, δ2J(η, y) is positive definite), then
y = y(x) is a local minimum.

We will skip the proof but want to emphasize a key point.

Recall that given an extremal y = y(x) ∈ S, for any η = η(x) ∈ H and small ε,
one has

(∗) J(y + εη)− J(y) =
ε2

2!

[
δ2J(η, y) +O(ε)

]
.

To justify the claim, one needs to show that the positive definite δ2J(η, y) can
control the term O(ε) inside the bracket. This is not a trivial task since, for η = 0,
δ2J(0, y) = 0, and hence, δ2J(η, y) can be made as small as one wants by choosing
η appropriately. The point is that O(ε) also depends on η, which needs Taylor
expansion up to O(ε3) (see Exercise #2 in Section 10.2), and CAN be controlled
by δ2J(η, y).
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Example 1. Consider

J(y) =

∫ 2

1

x3y′2dx, y(1) = 0, y(2) = 3.

The problem has a unique extremal given by

y(x) = 4− 4

x2
.

Note that p(x) = fy′y′ = 2x3 > 0 for x ∈ [1, 2] and q(x) = 0.

The Jacobi equation is (2x3u′)′ = 0. The solution with u(1) = 0 and u′(1) = 1
is u(x) = 1

2 −
1

2x2
, which has no zero in (1, 2]. Therefore, the extremal y = y(x) is

a local minimum.
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Example 2. Consider

J(y) =

∫ π

0

(
y sinx− y′2 + 2yy′

)
dx with fixed end points.

One can check that a general solution of the EL is

y(x) = c1x+ c2 +
1

2
sinx.

Note that p(x) = −2 < 0 for x ∈ [0, π] (suggesting local maxima) and q(x) = 0.

The solution of the IVP

(−2u′)′ = 0 with u(0) = 0 and u′(0) = 1

is u(x) = x, which is nonzero for x ∈ (0, π]. Thus, the extremal is a local maximum.
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§10.6. More on conjugate points

1. From a general solution of EL to a general solution of Jacobi equation.

Consider

J(y) =

∫ x1

x0

f(x, y, y′)dx with fixed end points.

Theorem. Suppose y = y(x; c1, c2) is a general solution of the EL; that is, for any
c1 and c2,

d

dx
fy′
(
x, y(x; c1, c2), y

′(x; c1, c2)
)
− fy

(
x, y(x; c1, c2), y

′(x; c1, c2)
)

= 0.

Then,

u1(x) =
∂y

∂c1
(x; c1, c2) and u2(x) =

∂y

∂c2
(x; c1, c2)

are solutions of the Jacobi Accessory Equation

(p(x)u′)′ − q(x)u = 0.
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Proof. Take the partial derivative with respect to c1 from the EL equation to get

∂

∂c1

[
d

dx
fy′
(
x, y(x; c1, c2), y

′(x; c1, c2)
)
− fy

(
x, y(x; c1, c2), y

′(x; c1, c2)
)]

=
d

dx

[
∂

∂c1
fy′
(
x, y(x; c1, c2), y

′(x; c1, c2)
)]
− ∂

∂c1
fy
(
x, y(x; c1, c2), y

′(x; c1, c2)
)

=
d

dx

[
fy′y

∂y

∂c1
+ fy′y′

∂y′

∂c1

]
−
[
fyy

∂y

∂c1
+ fyy′

∂y′

∂c1

]
= 0.

With u1 = ∂c1y, one has u′1 = ∂c1y
′, and hence,

0 =
d

dx

[
fy′yu1 + fy′y′u

′
1

]
−
[
fyyu1 + fyy′u

′
1

]
=

d

dx
fyy′u1 + fyy′u

′
1 + (fy′y′u

′
1)
′ − fyyu1 − fyy′u′1

= (p(x)u′1)
′ − q(x)u1.

Thus, u1 is a solution of the Jacobi Accessory Equation. Similarly, so is u2.
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Example 1. Consider

J(y) =

∫ π

0

(
y sinx− y′2 + 2yy′

)
dx with fixed end points.

One can check that a general solution of the EL is

y(x) = c1x+ c2 +
1

2
sinx.

Thus, u1(x) = yc1 = x and u2(x) = yc2 = 1 are two solutions of the Jacobi
equation, and hence, a general solution is

u(x) = Au1(x) +Bu2(x) = Ax+B with u′(x) = A.

The solution with the initial values u(0) = 0 and u′(0) = 1 is u(x) = x (as was
shown in the previous part). Therefore, there is no conjugate point to x = 0 in
[0, π]. So the extremal is a local maximum since p(x) = −2 < 0.
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Example 2. Consider J(y) =

∫ l

0

(
y′2 − y2

)
dx with y(0) = y(l) = 0.

The EL equation is y′′ + y = 0, which has a general solution

y(x) = c1 cosx+ c2 sinx.

Thus, u1(x) = cosx and u2(x) = sinx are two solution of the Jacobi Accessory
Equation, and hence, a general solution is

u(x) = Au1(x) +Bu2(x) = A cosx+B sinx with u′(x) = −A sinx+B cosx.

The initial values u(0) = 0 and u′(0) = 1 yield A = 0 and B = 1. So the
corresponding solution is u(x) = sinx, which has zeros x = kπ. In particular,

if l < π, then there is no conjugate point to x = 0 in (0, l], and hence, the
extremal is a local minimum;

if l > π, then x = π ∈ (0, l) is a conjugate to x = 0, and hence, the extremal is
not a local minimum.
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2. No x in f .

Recall that H(y, y′) = y′fy′ − f is a 1st integral for the EL of an extremal.

Theorem. If there is no x in f and u = u(x) with u(x0) = 0 and u′(x0) = 1 is the
principal solution of the Jacobi equation associated to an extremal y = y(x). Then

Hy′u
′ +Hyu = Hy′(x0, y(x0), y

′(x0)),

which is a first order linear ODE.

Proof. It suffices to show that Hy′u
′ +Hyu is a constant. Note that Hy′ = y′fy′y′

and Hy = y′fyy′ − fy. So Hy′u
′ +Hyu = y′fy′y′u

′ + (y′fyy′ − fy)u.

Take the derivative with respect to x to get

y′(fy′y′u
′)′ + y′′fy′y′u

′ − y′
(
fyy −

d

dx
fyy′

)
u+ (y′fyy′ − fy)u′

= y′
(

(pu′)′ − q(x)u
)

+
(
y′′fy′y′ + y′fyy′ − fy

)
u′.

Note (pu′)′ − q(x)u = 0 is Jacobi equation and y′′fy′y′ + y′fyy′ − fy = 0 is EL.
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