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Abstract

In this work, we consider ionic flow through ion channels for an ionic mixture of
a cation species (positively charged ions) and an anion species (negatively charged
ions), and examine effects of a positive permanent charge on fluxes of the cation
species and the anion species. For an ion species, and for any given boundary
conditions and channel geometry, we introduce a ratio λ(Q) = J(Q)/J(0) between
the flux J(Q) of the ion species associated with a permanent charge Q and the
flux J(0) associated with zero permanent charge. The flux ratio λ(Q) is a suitable
quantity for measuring an effect of the permanent charge Q: if λ(Q) > 1, then the
flux is enhanced by Q; if λ < 1, then the flux is reduced by Q. Based on analysis
of Poisson-Nernst-Planck models for ionic flows, a universal property of permanent
charge effects is obtained: for a positive permanent charge Q, if λ1(Q) is the flux
ratio for the cation species and λ2(Q) is the flux ratio for the anion species, then
λ1(Q) < λ2(Q), independent of boundary conditions and channel geometry. The
statement is sharp in the sense that, at least for a given small positive Q, depending
on boundary conditions and channel geometry, each of the followings indeed occurs:

(i) λ1(Q) < 1 < λ2(Q); (ii) 1 < λ1(Q) < λ2(Q); (iii) λ1(Q) < λ2(Q) < 1.

Analogous statements hold true for negative permanent charges with the inequalities
reversed.

It is also shown that the quantity δ(Q) = |J(Q) − J(0)| may not be suitable
for comparing the effects of permanent charges on cation flux and on anion flux.
More precisely, for some positive permanent charge Q, if δ1(Q) is associated with
the cation species and δ2(Q) is associated with the anion species, then, depending
on boundary conditions and channel geometry, each of the followings is possible:
(a) δ1(Q) > δ2(Q); (b) δ1(Q) < δ2(Q).
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1 Introduction

A central topic of physiology concerns functions of ion channels. Ion channels are large
proteins embedded in cell membranes that have “holes” open to inside and outside of
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cells. Ion channels can open and close gated by various mechanisms (see, e.g. [8, 24]).
During the open stage, ions flow through ion channels and produce electrical signals
that control many biological functions (see, e.g. [14, 15]). Motions of ions are governed
by general physical laws of electrodiffusion which relate rates of changes of interested
quantities. The macroscopic properties of ionic flows through ion channels rely further
on specific structural characteristics (permanent charges and channel geometry) of ion
channels and external driving forces (boundary potentials and concentrations of ion
species involved). The arguably most important quantity of ionic flows is the fluxes
Jk’s of individual ion species. The algebraic sum of fluxes with their valences zk’s as
coefficients gives the total current I =

∑
zkJk. Most experiments today measure the

total current I based on electrical properties of the ionic mixture, from which one cannot
separate the contributions of individual fluxes. To measure the fluxes of individual ions,
radioactive isotopes of interested ion species are applied. For example, for sodium-
chloride (Na+Cl−) solutions, one can add a tiny amount of a radioactive isotope of
sodium. The flux of this isotope can be measured by its radioactivity. Flux of sodium
can then be measured by measuring the flux of the isotope (see, for example, [25, 29, 62]
for more details).

These measurements are input-output types, in particular, internal dynamics of ionic
flows are beyond the limits of present experimental techniques of measurements. Math-
ematical analysis provides an alternative approach for the study of internal dynamics,
has a flexibility to incorporate multi-parameters of the physical problem altogether, and
has the potential to track the effects of different parameters on the physical properties.
The basic primitive models for ionic flows are the Poisson-Nernst-Planck (PNP) type
systems. PNP type systems are continuum models which miss many atomic level details
and specifics (such as paths of individual ions, location of an ion with a finite size) but
capture macroscopic/thermodynamic properties (such as fluxes, system energy, etc.) of
ionic flows. The classical PNP model treats ions essentially as point charges. The classi-
cal model has been refined to include ion size effects, variable dielectric coefficients and
side chains, and the efforts have shown great successes (see, for example, [7, 17, 21, 22,
23, 26, 27, 28, 30, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 46, 50, 58, 63, 64, 65, 68, 69, 70]).

In this work, we will examine the effects of permanent charges on a mixture of a
cation species and an anion species based on analysis of PNP type models. For an ion
species, and for any given boundary conditions and channel geometry, we introduce a
ratio λ(Q) = J(Q)/J(0) between its flux J(Q) associated with the permanent charge
Q and the flux J(0) associated with zero permanent charge. The flux ratio λ(Q) turns
out to be a suitable quantity for measuring the effect: if λ(Q) > 1, then the flux is
enhanced by Q; if λ < 1, then the flux is reduced by Q. Our main result (Theorem
4.1) reveals a universal property for an effect of permanent charges on fluxes of ionic
mixtures with a cation species and an anion species; that is, for a positive permanent
charge Q, if λ1(Q) is the ratio for the cation species and λ2(Q) is the ratio for the
anion species, then λ1(Q) < λ2(Q), independent of boundary conditions and channel
shapes. It follows from the results in [31] (summarized in Theorem 3.2) that the above
statement is sharp. Analogous statements hold true for negative permanent charges with
the inequalities reversed. We also show (Proposition 3.3) that the absolute difference
δ(Q) = |J(Q)− J(0)| is not a suitable quantity for comparing the effects of permanent
charges on the cation flux and the anion flux; that is, for some positive permanent
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charge Q, if δ1(Q) is associated with the cation species and δ2(Q) is associated with the
anion species, then, depending on boundary conditions and channel shapes, each of the
followings is possible: (a) δ1(Q) > δ2(Q); (b) δ1(Q) < δ2(Q).

The rest of the paper is organized as follows. In Section 2, we recall the three-
dimensional and a quasi-one-dimensional PNP type models for ionic flows and a dimen-
sionless form of the quasi-one-dimensional model. A statement of our result is provided.
In Section 3, some relevant results from [31] are recalled that also serve as a part of
motivations for our study in this paper and the above stated claim on the quantity δ(Q)
is established. Section 4 contains proofs of our main results on λ(Q). In Section 5,
concluding remarks and further related problems are provided.

2 Poisson-Nernst-Planck type models and the main result

Permanent charges and channel shapes are the key structures of ion channels. Their
effects on ionic flows are the main concern of ion channel functions. We will study the
effects based on analysis of PNP type models.

2.1 Three-dimensional and quasi-one-dimensional PNP models

Taking the structural characteristics into considerations, PNP type systems are primi-
tive models for ionic flows that treat the aqueous medium (in which salts are dissolved
to free ions and ions are migrating) as dielectric continuum. PNP systems can be de-
rived as reduced continuum models from molecular dynamic Langevin models ([55]),
from Boltzmann equations ([4]), and from variational principles ([26, 27, 28, 60]), etc.

For an ionic mixture with n ion species, PNP reads

∇ ·
(
εr(r)ε0∇Φ

)
= −e0

( n∑
s=1

zsCs +Q(r)
)
,

∇ · ~Jk = 0, − ~Jk =
1

kBT
Dk(r)Ck∇µk, k = 1, 2, · · · , n

(2.1)

where r ∈ Ω with Ω being a three-dimensional cylindrical-like domain representing the
channel, Q(r) is the permanent charge density, εr(r) is the relative dielectric coefficient,
ε0 is the vacuum permittivity, e0 is the elementary charge, kB is the Boltzmann constant,
T is the absolute temperature; Φ is the electric potential, and, for the kth ion species,
Ck is the concentration, zk is the valence (the number of charges per particle), µk is the
electrochemical potential depending on Φ and {Cj}, ~Jk is the flux density vector, and
Dk(r) is the diffusion coefficient.

Reduction of three-dimensional PNP systems (2.1) to quasi-one-dimensional models
was first proposed in [48] based on the fact that ion channels have narrow cross-sections
relative to their lengths, and was partially justified in [45] for special cases. A quasi-
one-dimensional PNP model is

1

A(X)

d

dX

(
εr(X)ε0A(X)

d

dX
Φ
)

= −e0
( n∑
s=1

zsCs +Q(X)
)
,

d

dX
Jk = 0, −Jk =

1

kBT
Dk(X)A(X)Ck

d

dX
µk, k = 1, 2, · · · , n

(2.2)
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where X ∈ [0, l] is the coordinate along the axis of the channel, A(X) is the area of
cross-section of the channel over the location X. Equipped with system (2.2), we impose
the following boundary conditions (see, [16] for a reasoning), for k = 1, 2, · · · , n,

Φ(0) = V, Ck(0) = Lk > 0; Φ(l) = 0, Ck(l) = Rk > 0. (2.3)

For a solution of BVP (2.2) and (2.3), the current I is

I =
n∑
j=1

zjJj . (2.4)

For fixed Lk’s and Rk’s, Jk’s depend on V only and formula (2.4) defines the I-V
(current-voltage) relation – an important characteristic of an ion channel.

The electrochemical potential µk = µidk (X)+µexk (X) consists of the ideal component
µidk (X) and the excess component µexk (X). The ideal component µidk (X), given by

µidk (X) = zke0Φ(X) + kBT ln
Ck(X)

C0
(2.5)

with a fixed reference concentration C0, reflects the point-charge component of ions.
PNP models including only ideal components are referred to as classical PNP models.
Dynamics of classical PNP models has been analyzed by using asymptotic expansion
methods ([1, 4, 5, 6, 35, 49, 56, 57, 59, 61]) and geometric singular perturbation (GSP)
approaches ([2, 3, 16, 18, 31, 32, 43, 44, 47]). The excess component µexk (X) accounts
for ion sizes, which is crucial for many important properties of ion channels such as
selectivity. Modeling of the excess component µexk (X) is extremely challenging and is not
completely understood. A great deal of efforts has been attributed to approximations
of µexk (X) based on mean-spherical approximations, fundamental measure theory, and
density functional theory (e.g., [9, 10, 51, 52, 53]). Numerical simulations of PNP
with approximated models of µexk (X) have been conducted for ion channel problems in
comparison with experimental data and have shown great successes for properties such
as ion permeation and ion selectivity (e.g., [11, 12, 20, 21, 22, 23]). Other important
phenomena involving µexk (X) such as steric effects, layering, charge inversions, and
critical potentials have also been studied [7, 26, 27, 28, 30, 33, 34, 36, 38, 46, 54, 70].

We point out that BVP (2.2) and (2.3) is generally well-posed if the excess potentials
µexk (X) are local models, that is, for any X, µexk (X) depends on {Cj(X)} at the given
location X. In general, the excess potentials µexk (X) are nonlocal and, in this case, the
boundary value problem with boundary conditions (2.3) is severely under determined.
We refer the readers to [58] for more detailed discussion and for a correct formulation
of the boundary conditions for PNP with nonlocal excess potentials.

2.2 Rescaling of the quasi-one-dimensional model problem

We make a dimensionless rescaling following [19]. Let C0 be a characteristic concentra-
tion of the problems, for example,

C0 = max
1≤k≤n

{
Lk, Rk, sup

X∈[0,l]
|Q(X)|

}
.
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Set
D0 = max

1≤k≤n
{ sup
X∈[0,l]

Dk(X)} and ε̄r = sup
X∈[0,l]

εr(X).

Let

ε2 =
ε̄rε0kBT

e20l
2C0

, ε̂r(x) =
εr(X)

ε̄r
, x =

X

l
, h(x) =

A(X)

l2
,

Dk(x) =
Dk(X)

D0
, Q(x) =

Q(X)

C0
, φ(x) =

e0
kBT

Φ(X),

ck(x) =
Ck(X)

C0
, µ̂k =

1

kBT
µk, Jk =

Jk
lC0D0

.

(2.6)

In terms of the new variables, BVP (2.2) and (2.3) becomes

ε2

h(x)

d

dx

(
ε̂r(x)h(x)

dφ

dx

)
= −

n∑
s=1

zscs −Q(x),

dJk
dx

= 0, −Jk = Dk(x)h(x)ck
dµ̂k
dx

,

(2.7)

with boundary conditions at x = 0 and x = 1

φ(0) = V0 :=
e0
kBT

V, ck(0) = lk :=
Lk
C0

; φ(1) = 0, ck(1) = rk :=
Rk
C0
. (2.8)

Our analysis is based on the scaled quasi-one-dimensional BVP (2.7) and (2.8). All
results can be transformed easily back to BVP (2.2) and (2.3). In the following, we
assume ε > 0 is small and examine BVP (2.7) and (2.8) as a singularly perturbed BVP.
We comment that if the distance between the boundary points is l = 2.5(nm) and the
characteristic concentration is C0 = 10(M), then ε is of order 10−3 (see, for example,
[17]).

For fixed boundary conditions, we denote any solution of BVP (2.7) and (2.8) by(
φ(x;Q, ε), c1(x;Q, ε), c2(x;Q, ε), J1(Q, ε), J2(Q, ε)

)
,

and often its zeroth order approximation in ε by(
φ(x;Q), c1(x;Q), c2(x;Q), J1(Q), J2(Q)

)
. (2.9)

We indicate the dependence of solutions on Q but, of course, all these quantities depend
on other parameters of the problem too such as the boundary conditions, the diffusion
coefficients and the channel geometry. We will also use the notation Dk(x;Q) to indicate
the dependence of diffusion coefficients on the environment with the presence of Q(x).

2.3 Statement of results for n = 2 with z1 > 0 > z2

A simple but important observation was made explicitly in [18], that is, the Nernst-
Planck equation in (2.7) for the flux Jk gives

Jk(Q, ε)Fk(Q, ε) = µ̂k(0)− µ̂k(1). (2.10)
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where

Fk(Q, ε) =

∫ 1

0

1

Dk(x;Q)h(x)ck(x;Q, ε)
dx > 0.

An immediate consequence is that the sign of Jk(Q, ε) is determined solely by the trans-
membrane electrochemical potential µ̂k(0)−µ̂k(1): under the same boundary conditions,
the sign of Jk(Q, ε) is the same as that of Jk(0, ε), independent of the permanent charge
Q(x). However, the permanent charge Q(x) influences magnitudes of Jk(Q, ε)’s. To
measure this effect for kth ion species, we introduce a flux ratio

λk(Q, ε) :=
Jk(Q, ε)

Jk(0, ε)
. (2.11)

From (2.10), for any permanent charge Q(x), one has λk(Q, ε) > 0. In particular,
if λk(Q, ε) > 1, then |Jk(Q, ε)| > |Jk(0, ε)|; that is the magnitude of the flux Jk(Q, ε),
relative to that of the flux Jk(0, ε), is enhanced by the permanent charge Q; if λk(Q, ε) <
1, then the magnitude of the flux Jk(Q, ε), relative to that of the flux Jk(0, ε), is reduced
by the permanent charge Q.

Remark 2.1. We comment on the flux ratio λk(Q; ε) when Jk(0, ε) = 0. Note that,
from (2.10), Jk(0, ε) = 0 if and only if µ̂k(0) − µ̂k(1) = 0, and hence, Jk(Q, ε) = 0.
In this case, one would say that the permanent charge has no effect on the flux and
attempt to set λk(Q; ε) = 1 as a convention. A closer examination provides a correct
meaning and definition of λk(Q; ε) for this case. In fact, in this case, λk(Q; ε) is given
by a ratio of 0/0-type – a case occurs in calculus where one uses L’Hoptial rule to
determine if the ratio is well-defined as a limit. Indeed, treating the ratio as a limit as
µ̂δk = µ̂k(0)− µ̂k(1)→ 0, it follows from (2.10) that

λk(Q; ε) = lim
µ̂δk→0

Fk(0, ε)µ̂
δ
k

Fk(Q, ε)µ̂
δ
k

=
Fk(0, ε)

Fk(Q, ε)
. (2.12)

The latter ratio is well-defined, independent of whether or not µ̂δk = 0. In general,
thought, the ratio does not equal to 1 (see Remark 3.1, for example). In case that
λk(Q; ε) 6= 1, say λk(Q; ε) > 1, it is still consistent with the statement that the per-
manent charge enhances the flux Jk(Q; ε) = λk(Q; ε)Jk(0, ε) but the enhancement is
annihilated by Jk(0, ε) = 0.

Thus, the definition of λk(Q; ε) in the case that µ̂δk = 0 should be understood as
that in (2.12). It is worthwhile to mention a technical reason for this definition. The
flux ratio λk(Q; ε) depends also on (V0, L,R). If one uses the convention that λk = 1
for µ̂δk = 0, then, viewing λk as a function of (V0, L,R,Q), it would have (removable)
discontinuity at parameters where µ̂δk = 0. The definition of λk in (2.12) for the case
µ̂δk = 0 removes the discontinuity, and hence, is of advantage. 3

We consider ionic flows of ionic mixtures consisting of two ion species (n = 2), one
cation species with valence z1 > 0 and one anion species with valence z2 < 0. We will
show that (Theorem 4.1):

If Q(x) ≥ 0, Q(x) 6= 0, then λ1(Q, ε) < λ2(Q, ε) when ε is small enough. (2.13)
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Furthermore, combining with results from [31] (recalled in Section 3 for reader’s conve-
nience), this result is optimal or sharp.

In general, the quantity δk(Q) = |Jk(Q; ε) − Jk(0; ε)| is not suitable for comparing
the effects of permanent charges on cation flux and anion flux. This is discussed in
Proposition 3.3 in Section 3.

3 Relevant results from [31] and the quantity δk(Q)

3.1 Specifics of flux ratios for small positive permanent charges

In [31], the authors considered a setting of classical PNP models with n = 2, ε̂r = 1,
constant diffusion coefficients Dk(x)’s, and Q(x) as

Q(x) =


0, 0 < x < a,
Q0, a < x < b,
0, b < x < 1,

(3.1)

where Q0 is a constant with |Q0| small relative to the boundary concentrations lk’s and
rk’s. For the zeroth order approximation in ε of BVP (2.7) and (2.8), one can write

Jk(Q0) = Jk0 + Jk1Q0 +O(Q2
0). (3.2)

For kth ion species, denote the difference of its boundary electrochemical potentials by

µ̂δk :=µ̂δk(V0; lk, rk) = µ̂k(0)− µ̂k(1) = zkV0 + ln lk − ln rk.

Applying the methods in [16, 44] to the study of BVP (2.7) and (2.8), the following
results were obtained in [31] (see [31] for details and for other results).

Under the electroneutrality boundary conditions z1l1 = −z2l2 = L and z1r1 =
−z2r2 = R, it is derived in [31] that

J10 =
L−R

z1H(1)(lnL− lnR)
µ̂δ1, J20 =

R− L
z2H(1)(lnL− lnR)

µ̂δ2, (3.3)

and

J11 =
A(z2(1−B)V0 + lnL− lnR)

(z1 − z2)H(1)(lnL− lnR)2
µ̂δ1,

J21 =
A(z1(1−B)V0 + lnL− lnR)

(z2 − z1)H(1)(lnL− lnR)2
µ̂δ2,

(3.4)

where,

H(x) =

∫ x

0
h−1(s)ds, α =

H(a)

H(1)
, β =

H(b)

H(1)
,

A =A(L,R) = − (β − α)(L−R)2

((1− α)L+ αR)((1− β)L+ βR)(lnL− lnR)
,

B =B(L,R) =
ln((1− β)L+ βR)− ln((1− α)L+ αR)

A
.

(3.5)
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Therefore, for |Q0| small,

λ1(Q; 0) =
J1(Q0)

J1(0)
=
J10 + J11Q0 +O(Q2

0)

J10
= 1 +

J11
J10

Q0 +O(Q2
0)

=1 +
z1A(z2(1−B)V0 + lnL− lnR)

(z1 − z2)(lnL− lnR)(L−R)
Q0 +O(Q2

0),

λ2(Q; 0) =
J2(Q0)

J2(0)
=
J20 + J21Q0 +O(Q2

0)

J20
= 1 +

J21
J20

Q0 +O(Q2
0)

=1 +
z2A(z1(1−B)V0 + lnL− lnR)

(z2 − z1)(lnL− lnR)(R− L)
Q0 +O(Q2

0).

Remark 3.1. We provide a discussion directly related to Remark 2.1. Consider the
case, say µ̂δ1 = z1V0 + lnL − lnR = 0 but L 6= R so V0 6= 0. Then, for small |Q0| and
up to O(Q0),

λ1(Q; 0) = 1 +
z1A(z2(1−B)V0 + lnL− lnR)

(z1 − z2)(lnL− lnR)(L−R)
Q0.

If the coefficient of Q0 on the right-hand side of above is not zero, then λk(Q; 0) 6= 1 for
small |Q0| 6= 0. On the other hand, the coefficient of Q0 equals to zero if either A = 0
or z2(1−B)V0 +lnL− lnR = 0. The assumption that L 6= R implies that A 6= 0. Thus,
z2(1 − B)V0 + lnL − lnR = 0, which together with µ̂δ1 = 0 give B = (z2 − z1)/z2. The
latter does not hold in general, and hence, λ1(Q; 0) 6= 1 even if µ̂δ1 = 0. 3

A complete classification of properties of Jk1’s as consequences of interplay be-
tween boundary concentrations, boundary potential, channel geometry, and permanent
charges Q(x) with small |Q0| is obtained. The following is a summary of Theorems 4.7
and 4.8 in [31] in terms of the flux ratios λk(Q, ε).

Theorem 3.2. Suppose ε > 0 is small enough. Then, depending on the boundary con-
dition (V0, L,R) and the characteristic (α, β) of the channel geometry, a small positive
Q0 can

(i) reduce the flux of cations and enhance that of anions: λ1(Q, ε) < 1 < λ2(Q, ε);

(ii) enhance the fluxes of both cations and anions: λ1(Q, ε) > 1 and λ2(Q, ε) > 1;

(iii) reduce the fluxes of both cations and anions: λ1(Q, ε) < 1 and λ2(Q, ε) < 1;

(iv) but cannot enhance the flux of cations while reduce that of anions.

To complement the above results, we comment that, in [67], it is shown that, for
values of (V0, L,R) in a bounded region, if Q0 > 0 is large enough, then λ1(Q, ε) < 1;
but, either λ2(Q, ε) < 1 or λ2(Q, ε) > 1 may occur, depending on the specifics of
(V0, L,R). For moderate values of Q0, a numerical study in [66], focusing on parameter
values of (V0, Q0) for which λk = 1, reveals a rich behavior of the flux ratios.

Nevertheless, in Theorem 4.1, we will establish a universal property, that is, for
Q(x) ≥ 0 and Q(x) 6= 0 (not necessarily a piecewise constant Q(x)) and for ε > 0 small,
one always has λ1(Q, ε) < λ2(Q, ε).
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3.2 On the quantities δk(Q; ε)

To end this section, we present a result to indicate that the quantity δk(Q, ε) =
|Jk(Q, ε) − Jk(0, ε)| is not a suitable quantity for comparing the effects of permanent
charges on fluxes of cations and anions.

Proposition 3.3. Assume the setup in Subsection 3.1 with z1 = 1 and z2 = −1. For
Q0 > 0 small and ε > 0 small, depending on specifics of (V0, L,R, α, β), each of the
following inequalities is possible

(a) δ1(Q; ε) > δ2(Q; ε); (b) δ1(Q; ε) < δ2(Q; ε).

Proof. It suffices to establish the statement for δk(Q; 0). Note that, for k = 1, 2, if
Q0 > 0 is small, δk(Q; 0) = |Jk(Q0)− Jk(0)| = |Jk1Q0 + O(Q2

0)|, and hence, inequality
(a) is equivalent to |J11|/|J21| > 1 and inequality (b) is equivalent to |J11|/|J21| < 1. It
follows from (3.4) that

|J11|
|J21|

=

∣∣∣∣−(1−B)V0 + ln(L/R)

(1−B)V0 + ln(L/R)
· V0 + ln(L/R)

−V0 + ln(L/R)

∣∣∣∣
=

∣∣∣∣(B − 1)V20 +BV0 ln(L/R) + (ln(L/R))2

(B − 1)V20 −BV0 ln(L/R) + (ln(L/R))2

∣∣∣∣ .
Consider L > R. It has been shown that one can choose (α, β), depending on L

and R but independent of V0, so that B > 1 (Case (i) in Lemma 4.6 of [31]). Assume
this is the case. Note that, in the above expression inside the absolute value sign, the
numerator

N := (B − 1)V20 +BV0 ln
L

R
+

(
ln
L

R

)2

and the denominator

D := (B − 1)V20 −BV0 ln
L

R
+

(
ln
L

R

)2

can be viewed as quadratic polynomials in V0. Recall that we take L > R and B > 1.
The numerator N has two zeros given by

− ln
L

R
< 0 and − 1

B − 1
ln
L

R
< 0,

and the denominator D has two zeros given by

ln
L

R
> 0 and

1

B − 1
ln
L

R
> 0.

If we choose V0 so that

min

{
ln
L

R
,

1

B − 1
ln
L

R

}
> V0 > 0,

then N > 0 and D > 0, and N − D = 2BV0 ln(L/R) > 0, and hence, |J11| > |J21|,
which implies inequality (a).
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If we choose V0 so that

max

{
− ln

L

R
, − 1

B − 1
ln
L

R

}
< V0 < 0,

then N > 0 and D > 0, and N − D = 2BV0 ln(L/R) < 0, and hence, |J11| < |J21|,
which implies inequality (b).

4 A universal property of permanent charge effects

We will establish our main result on the flux ratios for cations and anions.

4.1 Basic assumptions

For our result, we will consider n = 2 with z1 > 0 > z2 and make the following general
assumptions for PNP type system (2.7).

(A1) The dimensionless quantity ε > 0 defined in (2.6) is small.

(A2) The permanent charge Q(x) satisfies that Q(x) ≥ 0, Q(x) 6= 0 and Q(x) may have
jump discontinuity.

(A3) The diffusion coefficients satisfy

D2(x;Q)

D1(x;Q)
= σ

for a constant σ > 0 independent of x and Q(x).

(A4) For a solution (φ(x;Q, ε), c1(x;Q, ε), c2(x;Q, ε), J1(Q, ε), J2(Q, ε)) of BVP (2.7)
and (2.8), the zeroth order approximation in ε

(c1(x;Q), c2(x;Q)) = (c1(x;Q, 0), c2(x;Q, 0))

satisfies electroneutrality condition

z1c1(x;Q) + z2c2(x;Q) +Q(x) = 0

for every x except possible jump points of Q(x).

We comment that (A3) and (A4) are assumed to be true also for Q = 0.
Before a statement of our main claim, we briefly comment on assumptions (A3)

and (A4). In general, the nature of diffusion coefficients Dk(x;Q)’s is not completely
understood. They are though not constants and vary from environment to environment.
In (A3), we do not assume specifics on individual diffusion coefficients but assume a
relation among them. (A3) roughly means that, as the environment varies from location
to location, its influences on the two diffusion coefficients at the same location x are
assumed to be the same; that is, the two diffusion coefficients vary from one common
environment to another common environment in a way so that their ratio is independent
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of locations. This is clearly not a justification of this assumption but only an explanation
of what it reflects.

The identity in (A4) is nothing but, up to the zeroth order approximation in ε, the
pointwise-electroneutrality condition. Global electroneutrality is widely accepted while,
in general, it is reasonable to assume only approximate pointwise-electroneutrality. Our
assumption of “approximate” is specific: pointwise-electroneutrality is assumed to be
exact only at the zeroth order approximation in ε. Mathematically, the zeroth or-
der pointwise-electroneutrality condition has been rigorously justified for classical PNP
models ([16, 44]) and PNP with hard-sphere potentials ([30, 38]).

We emphasize that, in the following, we do not assume PNP system (2.7) to be clas-
sical; that is, the electrochemical potential µk can include any local excess components
to account for the finite sizes of ions. Also, from the proof of Theorem 4.1 below, we
only need to assume the excess components to be local at x = 0 and x = 1. Away from
these two points, the models for the excess potentials could be nonlocal.

4.2 Statement of the main result and its proof

We are ready to show the following result.

Theorem 4.1. Consider ionic flow for two ion species with z1 > 0 > z2. Assume
(A1)–(A4). Then, for any solution of BVP (2.7) and (2.8), one has

λ1(Q, ε) =
J1(Q, ε)

J1(0, ε)
< λ2(Q, ε) =

J2(Q, ε)

J2(0, ε)
.

Proof. Without loss of generality, we assume the positive permanent charge Q(x) has
the following property: for some 0 < a < b < 1, Q(x) = 0 for x ∈ [0, a]∪]b, 1] and
Q(x) > 0 for x ∈ (a, b). Due to the assumption (A1), it suffices to show the result for
the zeroth order approximation in ε, that is,

J1(Q, 0)

J1(0, 0)
< λ2(Q, 0) =

J2(Q, 0)

J2(0, 0)
.

In the following, we will denote Jk(Q, 0) and Jk(0, 0) for ε = 0 by Jk(Q) and Jk(0),
respectively. Set, for k = 1, 2,

Fk(Q) =

∫ 1

0

1

Dk(x;Q)h(x)ck(x;Q)
dx.

Note that Fk(Q) > 0. Then, display (2.10) gives

Jk(0)Fk(0) = Jk(Q)Fk(Q) = µ̂k(0)− µ̂k(1),

and hence,
Jk(Q)

Jk(0)
=

Fk(0)

Fk(Q)
. (4.1)

It follows from (A3) that

F2(0) =

∫ 1

0

1

D2(x; 0)h(x)c2(x; 0)
dx =

1

σ

∫ 1

0

1

D1(x; 0)h(x)c2(x; 0)
dx.
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The assumption (A4) with Q = 0 then gives z1c1(x; 0) + z2c2(x; 0) = 0, and hence,

F2(0) = − z2
z1σ

∫ 1

0

1

D1(x; 0)h(x)c1(x; 0)
dx = − z2

z1σ
F1(0). (4.2)

On the other hand, it follows from (A3) and (A4) that

F2(Q) =

∫ a

0

1

D2(x;Q)h(x)c2(x;Q)
dx+

∫ 1

b

1

D2(x;Q)h(x)c2(x;Q)
dx

+

∫ b

a

1

D2(x;Q)h(x)c2(x;Q)
dx

=− z2
z1σ

∫ a

0

1

D1(x;Q)h(x)c1(x;Q)
dx− z2

z1σ

∫ 1

b

1

D1(x;Q)h(x)c1(x;Q)
dx

− z2
z1σ

∫ b

a

1

D1(x;Q)h(x)[z−11 Q(x) + c1(x;Q)]
dx

=− z2
z1σ

(F1(Q) + ∆(Q)) ,

(4.3)

where

∆(Q) =

∫ b

a

1

D1(x;Q)h(x)[z−11 Q(x) + c1(x;Q)]
dx−

∫ b

a

1

D1(x;Q)h(x)c1(x;Q)
dx.

The assumption (A2) and z1 > 0 imply that, for x ∈ (a, b),

1

z−11 Q(x) + c1(x;Q)
<

1

c1(x;Q)
,

and hence, ∆(Q) < 0. One has, from (4.1), (4.2), (4.3) and Fk(Q) > 0, that

J2(Q)

J2(0)
=

F2(0)

F2(Q)
=

F1(0)

F1(Q) + ∆(Q)
>

F1(0)

F1(Q)
=
J1(Q)

J1(0)
.

This completes the proof.

Corollary 4.2. Given a positive permanent charge Q(x), it is possible that

(i)
J2(Q)

J2(0)
>
J1(Q)

J1(0)
> 1, and hence,

J2(Q)− J2(0)

J2(0)
>
J1(Q)− J1(0)

J1(0)
> 0; that is, the

fluxes of both anion and cation are enhanced and, in this case, the relative amount
of flux increased for anion is greater than that for cation.

(ii) 1 >
J2(Q)

J2(0)
>
J1(Q)

J1(0)
, and hence, 0 <

J2(0)− J2(Q)

J2(0)
<
J1(0)− J1(Q)

J1(0)
; that is, the

fluxes of both anion and cation are reduced and, in this case, the relative amount
of flux reduced for anion is smaller than that for cation.

(iii)
J2(Q)

J2(0)
> 1 >

J1(Q)

J1(0)
so that the flux of anion is enhanced and that of cation is

reduced.
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Remark 4.3. A numerical study on flux ratios λk(Q) was recently conducted in [66]
based on the classical PNP model and a PNP model with a Hard-Sphere component
(PNP-HS). The permanent charge Q(x) was taken as in display (3.1) and the quantity
Q0 was increased from 0 to a large value. The numerical results for both the classical
PNP and the PNP-HS models verify the property λ1(Q; ε) < λ2(Q; ε) in Theorem 4.1.
Furthermore, for small Q0, the numerical results on the boundary conditions for each
of the cases (i), (ii) and (iii) in Theorem 3.2 agree perfectly with the analytical results
in [31].

5 Concluding remarks and further related problems

In this work, we discover a universal property of positive permanent charge effects on
fluxes of cations and anions. Combining with the results in [31], a fairly global picture
is obtained: A positive permanent charge can enhance the fluxes of both cations and
anions, can reduce the fluxes of both cations and anions, can reduce the flux of cations
while enhance that of anions, but cannot enhance the flux of cations while reduce that
of anions. Furthermore, in case both fluxes are enhanced, the relative amount of flux
increased for cations is smaller than that for anions; in case both fluxes are reduced,
the relative amount of flux decreased for cations is greater than that for anions. It
is straightforward to state the results of the effects of negative permanent charges on
fluxes of cations and anions.

The assumptions (A1) and (A4) are not independent: Without (A1), the pointwise
electroneutrality in (A4) may not be a good approximation. It would be interesting
to know if the claim of Theorem 4.1 is still true without assuming ε to be particularly
small. Other problems that are worthwhile to examine include

(P1) the effect of a positive permanent charge on fluxes of three and more ionic species;

(P2) the effect of sign changing permanent charges (e.g. piecewise constant with dif-
ferent signs) on fluxes of ionic mixtures.

We have used a quasi-one-dimensional PNP model for the study of the present
topic. For three-dimensional channels, the permanent charge may not be ring-like so its
effective one-dimensional version is not clear. This is an interesting problem to study.
Of course, it is important to study the topics discussed in this paper and the above
mentioned related problems for three-dimensional PNP type models.

Acknowledgement. The author thanks the anonymous referees for their comments,
particularly, one referee for his/her invaluable remarks and the suggestion to mention
the related problems for three-dimensional PNP type models.
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