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Abstract

In this work, we analyze a one-dimensional steady-state Poisson-Nernst-Planck
type model for ionic flow through a membrane channel with fixed boundary ion
concentrations (charges) and electric potentials. We consider two ion species,
one positively charged and one negatively charged, and assume zero permanent
charge. A local hard-sphere potential that depends pointwise on ion concentra-
tions is included in the model to account for ion size effects on the ionic flow. The
model problem is treated as a boundary value problem of a singularly perturbed
differential system. Our analysis is based on the geometric singular perturba-
tion theory but, most importantly, on specific structures of this concrete model.
The existence of solutions to the boundary value problem for small ion sizes is
established and, treating the ion sizes as small parameters, we also derive an
approximation of the I-V (current-voltage) relation and identify two critical po-
tentials or voltages for ion size effects. Under electroneutrality (zero net charge)
boundary conditions, each of these two critical potentials separates the poten-
tial into two regions over which the ion size effects are qualitatively opposite to
each other. On the other hand, without electroneutrality boundary conditions,
the qualitative effects of ion sizes will depend not only on the critical potentials
but also on boundary concentrations. Important scaling laws of I-V relations
and critical potentials in boundary concentrations are obtained. Similar results
about ion size effects on the flow of matter are also discussed. Under electroneu-
trality boundary conditions, the results on the first order approximation in ion
diameters of solutions, I-V relations and critical potentials agree with those with
a nonlocal hard-sphere potential examined by Ji and Liu [J. Dynam. Differential
Equations 24 (2012), 955-983].
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1 Introduction

In this work, we study the dynamics of ionic flow, the electrodiffusion of charges,
through ion channels via a one-dimensional steady-state Poisson-Nernst-Planck (PNP)
type system. The classical PNP includes only the ideal component of the electro-
chemical potential, and hence, treats ions essentially as point-charges. The PNP type
model studied in this paper includes an additional component, a hard-sphere (HS)
potential, to account for ion size effects (see §2.2 for details). We are particularly
interested in ion size effects on the I-V relation.

PNP system is a basic macroscopic model for electrodiffusion of charges through
ion channels ([11, 14, 16, 17, 18, 19, 20, 27, 28, 32, 39, 40, 58, 60, 68, 69, 70], etc.).
Under various reasonable conditions, it can be derived from the more fundamental
models of the Langevin-Poisson system (see, for example, [2, 7, 8, 12, 28, 40, 56, 59,
68, 69, 74, 79]) and the Maxwell-Boltzmann equations (see, for example, [3, 39, 40, 68,
79]), and from the energy variational analysis EnVarA ([21, 35, 36, 37, 38, 49, 50]).

The simplest PNP system is the classical Poisson-Nernst-Planck (cPNP) system.
It has been simulated ([9, 10, 11, 13, 15, 27, 28, 31, 33, 34, 40, 41, 42, 48, 57, 73, 83, 84])
and analyzed ([1, 4, 5, 22, 25, 51, 52, 55, 61, 71, 72, 75, 76, 77, 78, 82]) to a great extent.
As mentioned above, a major weak point of the cPNP is that it treats ions as point-
charges, which is reasonable only in near infinite dilute situation. Many extremely
important properties of ion channels, such as selectivity, rely on ion sizes critically.
For example, Na+ (sodium) and K+ (potassium), having the same valence (number
of charges per particle), are mainly different by their ionic sizes. It is the difference in
their ionic sizes that allows certain channels to prefer Na+ over K+ and some channels
to prefer K+ over Na+. In order to study the ion size effects on ionic flows, one has
to take into consideration of ion specific components of the electrochemical potential
in the PNP models. Including hard-sphere potentials of the excess electrochemical
potential is a first step toward a better modeling and is necessary to account for ion
size effects in the physiology of ion flows. There are two types of models for hard-
sphere potentials, local and nonlocal. Local models for hard-sphere potentials depend
pointwise on ion concentrations, such as the model (2.6) used in this paper, while
nonlocal models are proposed as functionals of ion concentrations (see, e.g., (5.9) in
Appendix from which the local model (2.6) is derived). The PNP type models with
ion sizes have been investigated computationally for ion channels and have shown
great success ([21, 35, 36, 37, 38, 26, 28, 30, 47, 85], etc.). Existence and uniqueness
of minimizers and saddle points of the free-energy equilibrium formulation with ionic
interaction have been mathematically analyzed (see, for example, [23, 49, 50]).

In a recent paper ([43]), the authors provided an analytical treatment of a one-
dimensional version of PNP type system. They studied the case where two oppositely
charged ions are involved with electroneutrality (zero net charge) boundary conditions,
the permanent charge can be ignored and a nonlocal hard-sphere potential of the
excess component is included in addition to the ideal component. They treated
the model as a singularly perturbed system and rigorously established the existence
and uniqueness results of the boundary value problem for small ion sizes. Treating
ion sizes as small parameters, they derived an approximation of the I-V relation.
Most importantly, the approximate I-V relation allows them to establish the following
results.
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(i) There is a critical potential or voltage Vc so that, if the boundary potential
V satisfies V > Vc, then ion sizes enhance the current I in the sense that the
contribution of ion sizes to the current I is positive; if V < Vc, then ion sizes
reduce the current I.

(ii) There is another critical potential V c so that, if V > V c, then the current I
increases in λ = d2/d1 where d1 and d2 are, respectively, the diameters of the
positively and negatively charged ions; if V < V c, then the current I decreases
in λ.

In [54], among other things, the authors designed an algorithm for numerically
detecting these critical potentials without using any analytical formulas for I-V re-
lations. They demonstrated the effectiveness of this algorithm by conducting two
numerical tasks. In the first one, the authors took the model problem with the same
setting as in [43] for which analytical formulas for Vc and V c are available. The au-
thors numerically computed I-V relations and, applying the algorithm, computed the
critical potentials Vc and V c. They found that the computed values Vc and V c agree
well with the values obtained from the analytical formulas. For the second numerical
task, the authors examined a PNP type model that includes also a nonzero perma-
nent charge Q. For this case, no analytical formulas for the I-V relations and for the
critical potentials are currently available. But the authors were able to numerically
identify the critical potentials by applying their algorithm.

In this paper, we study a one-dimensional version of PNP type system with a
local model for the hard-sphere (HS) potential. The problem has basically the same
setting as that in [43] except that we take a local model for the hard-sphere potential
and allow non-electroneutrality boundary conditions. One of earliest local models for
hard-sphere potentials was proposed by Bikerman ([6]), which contains ion size effect
of mixtures but is not ion specific (i.e., the hard-sphere potential is assumed to be the
same for different ion species). Local models have evolved through several stages and
become very reliable; for example, the Boubĺık-Mansoori-Carnahan-Starling-Leland
local model is ion specific and has been shown to be accurate ([66, 67], etc.). It is clear
that local models have the advantage of simplicity relative to nonlocal ones. In this
paper, we take a local hard-sphere model derived from the nonlocal model used in [43]
for two reasons: to provide a mathematical framework for the study of the problem
with local hard-sphere models; to compare the results for the local hard-sphere model
with those for the nonlocal hard-sphere model in [43].

Under electroneutrality boundary conditions, we will show that the local hard-
sphere model yields exactly the same results on the first order approximation (in the
diameters of the ion species) I-V relation and the critical potentials Vc and V c as
those of the nonlocal hard-sphere model in [43]. This is perhaps well expected. To
the contrary, in the absence of electroneutrality, it is rather surprising that the roles
of critical potentials Vc and V c on ion size effects are significantly different: the op-
posite effects of ion sizes separated by Vc and V c described in (i) and (ii) above now
depend on other quantities in terms of boundary concentrations (Theorems 4.5 and
4.6 and Proposition 4.8). Many important biological properties of ion channels are
controlled through the boundary conditions. Our results provide a concrete situation
for which the important I-V relations of ion channels can depend on boundary condi-
tions sensitively. An observation based on the I-V relation also reveals the following
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scaling laws (Theorem 4.14):

(a) the contribution I0 to the I-V relation from the ideal component scales linearly
in boundary concentrations (that is, if one scales the boundary concentrations
by a factor s, then I0 is scaled by s);

(b) the contribution (up to the leading order) to the I-V relation from the hard-
sphere component scales quadratically in boundary concentrations;

(c) both Vc and V c scale invariantly in boundary concentrations.

Results on ion size effects to the flow of matter in Section 4.2 again indicate the
richness of ion size effects on the electrodiffusion process.

The general framework for the analysis is the geometric singular perturbation
theory–essentially the same as that for the nonlocal hard-sphere potential in [43]. A
major difference is that the nonlocal hard-sphere potentials disappear in the limiting
fast system but the local ones survive in this limit, and hence, more is involved in
the treatment of the limiting fast dynamics for the local hard-sphere potential case.
On the other hand, for the local hard-sphere potential case, we need not introduce
an auxiliary problem as that for nonlocal case in [43]. A crucial ingredient for the
success of our analysis is again the revealing of a set of integrals that allows us to
handle the limiting fast dynamics with details as for the classical PNP cases.

The rest of this paper is organized as follows. In Section 2, we describe the one-
dimensional PNP-HS model for ion flows, a local model for hard-sphere potentials,
and the setup of the boundary value problem of the singularly perturbed PNP-HS
system. In Section 3, the existence and (local) uniqueness result for the boundary
value problem is established in the framework of the geometric singular perturbation
theory. Section 4 contains two parts. In Section 4.1, we derive an approximation of
the I-V relation based on the analysis in Section 3, identify three critical potentials,
and examine significant roles of two of the critical potentials for ion size effects on
ionic flows. Important scaling laws of I-V relations and critical potentials in boundary
concentrations are obtained. In Section 4.2, we discuss ion size effects on the flow
of matter. This is presented briefly due to a simple relation between the flow rate
of charge and the flow rate of matter. A derivation of the local hard-sphere poten-
tial used in the work from the exact one-dimensional nonlocal model used in [43] is
provided in Section 5 (the appendix).

2 Problem Setup

2.1 A one-dimensional PNP type system

We assume the channel is narrow so that it can be effectively viewed as a one-
dimensional channel and normalize it as the interval [0, 1] that connects the interior
and the exterior of the channel. A natural one-dimensional (time-evolution) PNP
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type model for ion flows of n ion species is (see [53, 57])

1

h(x)

∂

∂x

(
εr(x)ε0h(x)

∂Φ

∂x

)
= −e

 n∑
j=1

zjcj +Q(x)

 ,

∂ci
∂t

+
1

h(x)

∂Ji
∂x

= 0, −Ji =
1

kT
Di(x)h(x)ci

∂µi
∂x

, i = 1, 2, · · · , n

(2.1)

where e is the elementary charge, k is the Boltzmann constant, T is the absolute
temperature; Φ is the electric potential, Q(x) is the permanent charge of the channel,
εr(x) is the relative dielectric coefficient, ε0 is the vacuum permittivity; h(x) is the
area of the cross-section of the channel over the point x; for the ith ion species, ci
is the concentration, zi is the valence (the number of charges per particle), µi is the
electrochemical potential, Ji is the flux density, and Di(x) is the diffusion coefficient.
The boundary conditions are, for i = 1, 2, · · · , n,

Φ(t, 0) = V, ci(t, 0) = Li > 0; Φ(t, 1) = 0, ci(t, 1) = Ri > 0. (2.2)

For ion channels, an important characteristic is the so-called I-V relation (current-
voltage relation). For a solution of the steady-state boundary value problem of (2.1)
and (2.2), the rate of flow of charge through a cross-section or current I is

I =
n∑
j=1

zjJj . (2.3)

For fixed boundary concentrations Li’s and Ri’s, Jj ’s depend on V only and formula
(2.3) provides a relation of the current I on the voltage V . This relation is the I-V
relation. We will also examine ion size effects on the flow rate of matter through a
cross-section, T , given by

T =

n∑
j=1

Jj . (2.4)

2.2 Excess potential and a local hard sphere model

The electrochemical potential µi(x) for the ith ion species consists of the ideal com-
ponent µidi (x), the excess component µexi (x) and the concentration-independent com-
ponent µ0i (x) (e.g. a hard-well potential):

µi(x) = µ0i (x) + µidi (x) + µexi (x)

where

µidi (x) = zieΦ(x) + kT ln
ci(x)

c0
(2.5)

with some characteristic number density c0. The classical PNP system takes into
consideration of the ideal component µidi (x) only. This component reflects the collision
between ion particles and the water molecules. It has been accepted that the classical
PNP system is a reasonable model in, for example, the dilute case under which the
ion particles can be treated as point particles and the ion-to-ion interaction can be
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more or less ignored. The excess chemical potential µexi (x) accounts for the finite size
effect of charges (see, e.g., [65, 66]).

In this paper, we will take the following local hard-sphere model for µexi (x)

1

kT
µLHSi (x) = − ln

1−
n∑
j=1

djcj(x)

+
di
∑n

j=1 cj(x)

1−
∑n

j=1 djcj(x)
, (2.6)

where dj is the diameter of the jth ion species. As mentioned in the introduction, this
local model is an approximation of the well-known nonlocal model for hard-sphere
(hard-rod) used in [43]. Its derivation is provided in Appendix (Section 5).

2.3 The steady-state boundary value problem and assumptions

The main goal of this paper is to examine the qualitative effect of ion sizes via the
steady-state boundary value problem of (2.1) and (2.2) with the local hard-sphere
(LHS) model (2.6) for the excess potential. We will examine the steady-state bound-
ary value problem in Section 3. In Section 4, we will obtain approximations for (2.3)
and (2.4) to study ion size effects on the I-V relation and on the flow rate T .

For definiteness, we will take essentially the same setting as that in [43] but with-
out assuming electroneutrality boundary conditions: z1L1 + z2L2 = z1R1 + z2R2 = 0;
that is,

(A1). We consider two ion species (n = 2) with z1 > 0 and z2 < 0.

(A2). The permanent charge is set to be zero: Q(x) = 0.

(A3). For the electrochemical potential µi, in addition to the ideal component µidi , we
also include the local hard-sphere potential µLHSi in (2.6).

(A4). The relative dielectric coefficient and the diffusion coefficient are constants, that
is, εr(x) = εr and Di(x) = Di.

In the sequel, we will assume (A1)–(A4). Under the assumptions (A1)–(A4), the
steady-state system of (2.1) is

1

h(x)

d

dx

(
εr(x)ε0h(x)

dΦ

dx

)
= −e (z1c1 + z2c2) ,

dJi
dx

= 0, −Ji =
1

kT
Di(x)h(x)ci

dµi
dx

, i = 1, 2.

(2.7)

We now make the dimensionless re-scaling in (2.7),

φ =
e

kT
Φ, V̄ =

e

kT
V, ε2 =

εrε0kT

e2
, Ji =

Ji
Di
.

Using the expression (2.5) for the ideal component µidi (x), we have, for i = 1, 2,

−Ji =− Ji
Di

=
1

kT
h(x)ci

dµidi
dx

+
1

kT
h(x)ci

dµLHSi

dx

=
e

kT
zih(x)ci

dΦ

dx
+ h(x)

dci
dx

+
h(x)ci
kT

dµLHSi

dx

=zih(x)ci
dφ

dx
+ h(x)

dci
dx

+
h(x)ci
kT

dµLHSi

dx
.
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Note also that,

εrε0
dΦ

dx
= ε2

e2

kT

dΦ

dx
= ε2

e2

kT

kT

e

dφ

dx
= ε2e

dφ

dx
.

Therefore, the boundary value problem (2.7) and (2.2) becomes

ε2

h(x)

d

dx

(
h(x)

d

dx
φ

)
= −z1c1 − z2c2,

dJ1
dx

=
dJ2
dx

= 0,

h(x)
dc1
dx

+ z1h(x)c1
dφ

dx
+
h(x)c1
kT

d

dx
µLHS1 (x) = −J1,

h(x)
dc2
dx

+ z2h(x)c2
dφ

dx
+
h(x)c2
kT

d

dx
µLHS2 (x) = −J2,

(2.8)

with the boundary conditions, for i = 1, 2,

φ(0) = V̄ , ci(0) = Li > 0; φ(1) = 0, ci(1) = Ri > 0. (2.9)

It follows directly from (2.6) for the local hard-sphere potential µLHSi that

1

kT

d

dx
µLHS1 =

d1(2 + d1(c2 − c1)− 2d2c2)

(1− d1c1 − d2c2)2
dc1
dx

+
d1 + d2 − d21c1 − d22c2

(1− d1c1 − d2c2)2
dc2
dx

,

1

kT

d

dx
µLHS2 =

d1 + d2 − d21c1 − d22c2
(1− d1c1 − d2c2)2

dc1
dx

+
d2(2 + d2(c1 − c2)− 2d1c1)

(1− d1c1 − d2c2)2
dc2
dx

.

(2.10)

Substituting (2.10) into system (2.8), we obtain

ε2

h(x)

d

dx

(
h(x)

d

dx
φ

)
= −z1c1 − z2c2,

dJ1
dx

=
dJ2
dx

= 0,

dc1
dx

=− f1(c1, c2; d1, d2)
dφ

dx
− 1

h(x)
g1(c1, c2, J1, J2; d1, d2),

dc2
dx

=f2(c1, c2; d1, d2)
dφ

dx
− 1

h(x)
g2(c1, c2, J1, J2; d1, d2)

(2.11)

where

f1(c1, c2; d1, d2) =z1c1 − (d1 + d2 − d21c1 − d22c2)(z1c1 + z2c2)c1

− z1(d1 − d2)c21,
f2(c1, c2; d1, d2) =− z2c2 + (d1 + d2 − d21c1 − d22c2)(z1c1 + z2c2)c2

+ z2(d2 − d1)c22,
g1(c1, c2, J1, J2; d1, d2) =

(
(1− d1c1)2 + d22c1c2

)
J1

− c1(d1 + d2 − d21c1 − d22c2)J2,
g2(c1, c2, J1, J2; d1, d2) =

(
(1− d2c2)2 + d21c1c2

)
J2

− c2(d1 + d2 − d21c1 − d22c2)J1.

(2.12)

Recall the boundary conditions are

φ(0) = V̄ , ci(0) = Li > 0; φ(1) = 0, ci(1) = Ri > 0. (2.13)
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3 Geometric singular perturbation theory for (2.11)–(2.13)

We will rewrite system (2.11) into a standard form for singularly perturbed systems
and convert the boundary value problem (2.11) and (2.13) to a connecting problem.

Denote the derivative with respect to x by overdot and introduce u = εφ̇ and
τ = x. System (2.11) becomes

εφ̇ =u, εu̇ = −z1c1 − z2c2 − ε
hτ (τ)

h(τ)
u,

εċ1 =− f1(c1, c2; d1, d2)u−
ε

h(τ)
g1(c1, c2, J1, J2; d1, d2),

εċ2 =f2(c1, c2; d1, d2)u−
ε

h(τ)
g2(c1, c2, J1, J2; d1, d2)

J̇1 =J̇2 = 0, τ̇ = 1.

(3.1)

System (3.1) will be treated as a singularly perturbed system with ε as the singular
parameter. Its phase space is R7 with state variables (φ, u, c1, c2, J1, J2, τ). We have
included constants J1 and J2 in the phase space. A reason for this is explained in the
paragraph below that of display (3.3).

For ε > 0, the rescaling x = εξ of the independent variable x gives rise to

φ′ =u, u′ = −z1c1 − z2c2 − ε
hτ (τ)

h(τ)
u,

c′1 =− f1(c1, c2; d1, d2)u−
ε

h(τ)
g1(c1, c2, J1, J2; d1, d2),

c′2 =f2(c1, c2; d1, d2)u−
ε

h(τ)
g2(c1, c2, J1, J2; d1, d2),

J ′1 =J ′2 = 0, τ ′ = ε,

(3.2)

where prime denotes the derivative with respect to the variable ξ.
For ε > 0, systems (3.1) and (3.2) have exactly the same phase portrait. But

their limiting systems at ε = 0 are different. The limiting system of (3.1) is called
the limiting slow system, whose orbits are called slow orbits or regular layers. The
limiting system of (3.2) is the limiting fast system, whose orbits are called fast orbits
or singular (boundary and/or internal) layers. By a singular orbit of system (3.1)
or (3.2), we mean a continuous and piecewise smooth curve in R7 that is a union of
finitely many slow and fast orbits. Very often, limiting slow and fast systems provide
complementary information on state variables. Therefore, the main task of singularly
perturbed problems is to patch the limiting information together to form a solution
for the entire ε > 0 system.

Let BL and BR be the subsets of the phase space R7 defined by

BL ={(V̄ , u, L1, L2, J1, J2, 0) ∈ R7 : arbitrary u, J1, J2},
BR ={(0, u,R1, R2, J1, J2, 1) ∈ R7 : arbitrary u, J1, J2},

(3.3)

where V̄ , L1, L2, R1 and R2 are given in (2.13). Then the original boundary value
problem is equivalent to a connecting problem, namely, finding a solution of (3.1) or
(3.2) from BL to BR (see, for example, [44]).
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For ε > 0 small, let ML(ε) be the collection of forward orbits from BL un-
der the flow and let MR(ε) be that of backward orbits from BR. Since the flow
is not tangent to BL and BR and dimBL = dimBR = 3, we have dimML(ε) =
dimMR(ε) = 4. We will show that ML(ε) and MR(ε) intersect transversally in the
phase space R7. Transversality of the intersection implies dim(ML(ε) ∩MR(ε)) =
dimML(ε) + dimMR(ε) − dimR7. It then follows that dim(ML(ε) ∩ MR(ε)) = 1
which would allow us to conclude the existence and (local) uniqueness of a solution
for the connecting problem. This is the reason that we include J1 and J2 in the phase
space. Alternatively, one can treat J1 and J2 as parameters and work in the phase
space R5. Then the corresponding BL and BR would each be of dimension one, and
hence, ML(ε) and MR(ε) would each be of dimension two. Should ML(ε) and MR(ε)
intersect, the intersection cannot be transversal due to the dimension counting. To es-
tablish the existence and uniqueness result with this alternative approach, one would
have to apply perturbation argument with J1 and J2 as perturbation parameters.

In what follows, we will consider the equivalent connecting problem for system
(3.1) or (3.2) and construct its solution from BL to BR. The construction process
involves two main steps: the first step is to construct a singular orbit to the connecting
problem, and the second step is to apply geometric singular perturbation theory to
show that there is a unique solution near the singular orbit for small ε > 0.

3.1 Geometric construction of singular orbits

Following the idea in [22, 51, 52], we will first construct a singular orbit on [0, 1] that
connects BL to BR. Such an orbit will generally consist of two boundary layers and
a regular layer.

3.1.1 Limiting fast dynamics and boundary layers

By setting ε = 0 in (3.1), we obtain the so-called slow manifold

Z = {u = 0, z1c1 + z2c2 = 0}. (3.4)

By setting ε = 0 in (3.2), we get the limiting fast system

φ′ =u, u′ = −z1c1 − z2c2,
c′1 =− f1(c1, c2; d1, d2)u,
c′2 =f2(c1, c2; d1, d2)u,

J ′1 =J ′2 = 0, τ ′ = 0.

(3.5)

Note that the slow manifold Z is the set of equilibria of (3.5).

Lemma 3.1. For system (3.5), the slow manifold Z is normally hyperbolic.

Proof. The slow manifold Z is precisely the set of equilibria of (3.5). The linearization
of (3.5) at each point of (φ, 0, c1, c2, J1, J2, τ) ∈ Z has five zero eigenvalues whose
generalized eigenspace is the tangent space of the five-dimensional slow manifold Z
of equilibria, and the other two eigenvalues are ±

√
z1f1 − z2f2. On the slow manifold

Z where z1c1 + z2c2 = 0, one has, from (2.12),

z1f1(c1, c2; d1, d2)− z2f2(c1, c2; d1, d2) = z21c1 + z22c2.
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Note that f1(c1, c2; d1, d2) has a factor c1 and f2(c1, c2; d1, d2) has a factor c2. It
follows from (c1, c2)-subsystem of (3.5) that {c1 > 0} and {c2 > 0} are invariant
under (3.5). Since c1 and c2 have positive boundary values, c1 and c2 are positive
for all x ∈ [0, 1]. Therefore, z1f1(c1, c2; d1, d2) − z2f2(c1, c2; d1, d2) > 0. Thus Z is
normally hyperbolic.

We denote the stable (resp. unstable) manifold of Z by W s(Z) (resp. W u(Z)).
Let ML be the collection of orbits from BL in forward time under the flow of system
(3.5) and MR be the collection of orbits from BR in backward time under the flow
of system (3.5). Then, for a singular orbit connecting BL to BR, the boundary layer
at τ = x = 0 must lie in NL = ML ∩W s(Z) and the boundary layer at τ = x = 1
must lie in NR = MR ∩W u(Z). In this subsection, we will determine the boundary
layers NL and NR, and their landing points ω(NL) and α(NR) on the slow manifold
Z. The regular layer, determined by the limiting slow system in §3.1.2, will lie in
Z and connect the landing points ω(NL) at τ = 0 and α(NR) at τ = 1. A singular
orbit Γ0 ∪ Λ ∪ Γ1 is illustrated in Figure 1 where Γ0 ⊂ NL is a boundary layer at
τ = 0 and Γ1 ⊂ NR is a boundary layer at τ = 1, and Λ is a regular layer connecting
the landing points of Γ0 and Γ1 on the slow manifold Z to be constructed in Section
3.1.2. We remark that the boundary layers Γ0 ⊂ NL and Γ1 ⊂ NR cannot be uniquely
determined untill the construction of Λ.

( ,     ,     )

B

u

s

M

M

0

0

c1 c

(u, J  , J  )

1

W  (Z)

W  (Z)

N L N(      )R

R

RL

1 2

1

Z

BL2

(      )

Figure 1: A singular orbit Γ0 ∪ Λ ∪ Γ1 on [0, 1]: a boundary layer Γ0 at τ = 0, a
regular layer Λ on Z from τ = 0 to τ = 1, and a boundary layer Γ1 at τ = 1.

Recall that d1 and d2 are the diameters of the two ion species. For small d1 > 0
and d2 > 0, we treat (3.5) as a regular perturbation of that with d1 = d2 = 0. While

10



d1 and d2 are small, their ratio is of order O(1). We thus set

d1 = d and d2 = λd (3.6)

and look for solutions

Γ(ξ; d) = (φ(ξ; d), u(ξ; d), c1(ξ; d), c2(ξ; d), J1(d), J2(d), τ)

of system (3.5) of the form

φ(ξ; d) = φ0(ξ) + φ1(ξ)d+ o(d), u(ξ; d) = u0(ξ) + u1(ξ)d+ o(d),

c1(ξ; d) = c10(ξ) + c11(ξ)d+ o(d), c2(ξ) = c20(ξ) + c21(ξ)d+ o(d),

J1(d) = J10 + J11d+ o(d), J2(d) = J20 + J21d+ o(d).

(3.7)

Substituting (3.7) into system (3.5), we obtain, for the zeroth order in d,

φ′0 =u0, u′0 = −z1c10 − z2c20,
c′10 =− z1c10u0, c′20 = −z2c20u0,
J ′10 =J ′20 = 0, τ ′ = 0,

(3.8)

and, for the first order in d,

φ′1 =u1, u′1 = −z1c11 − z2c21,
c′11 =− z1u0c11 − z1c10u1 + u0

(
(λ+ 1)z2c10c20 + 2z1c

2
10

)
,

c′21 =− z2u0c21 − z2c20u1 + u0
(
(λ+ 1)z1c10c20 + 2λz2c

2
20

)
,

J ′11 =J ′21 = 0, τ ′ = 0.

(3.9)

Recall that we are interested in the solutions Γ0(ξ; d) ⊂ NL = ML ∩ W s(Z) with
Γ0(0; d) ∈ BL and Γ1(ξ; d) ⊂ NR = MR ∩W u(Z) with Γ1(0; d) ∈ BR.

Proposition 3.2. Assume that d ≥ 0 is small.
(i) The stable manifold W s(Z) intersects BL transversally at points(

V̄ , ul0 + ul1d+ o(d), L1, L2, J1(d), J2(d), 0
)
,

and the ω-limit set of NL = ML
⋂
W s(Z) is

ω(NL) =
{

(φL0 + φL1 d+ o(d), 0, cL10 + cL11d+ o(d), cL20 + cL21d+ o(d), J1(d), J2(d), 0)
}
,

where Ji(d) = Ji0 + Ji1d+ o(d), i = 1, 2, can be arbitrary and

φL0 =V̄ − 1

z1 − z2
ln
−z2L2

z1L1
, z1c

L
10 = −z2cL20 = (z1L1)

−z2
z1−z2 (−z2L2)

z1
z1−z2 ,

ul0 =sgn(z1L1 + z2L2)

√
2

(
L1 + L2 +

z1 − z2
z1z2

(z1L1)
−z2

z1−z2 (−z2L2)
z1

z1−z2

)
;

φL1 =
1− λ
z1 − z2

(L1 + L2 − cL10 − cL20),

z1c
L
11 =− z2cL21 = z1c

L
10

(
L1 + λL2 +

λz1 − z2
z1 − z2

(L1 + L2) +
2(λz1 − z2)

z2
cL10

)
,

ul1 =
(L1 + L2)(L1 + λL2)− (cL10 + cL20)(c

L
10 + λcL20)− cL11 − cL21

ul0
.
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(ii) The unstable manifold W u(Z) intersects BR transversally at points

(0, ur0 + ur1d+ o(d), R1, R2, J1(d), J2(d), 1) ,

and the α-limit set of NR is

α(NR) =
{

(φR0 + φR1 d+ o(d), 0, cR10 + cR11d+ o(d), cR20 + cR21d+ o(d), J1(d), J2(d), 1)
}
,

where Ji(d) = Ji0 + Ji1d+ o(d), i = 1, 2, can be arbitrary and

φR0 =− 1

z1 − z2
ln
−z2R2

z1R1
, z1c

R
10 = −z2cR20 = (z1R1)

−z2
z1−z2 (−z2R2)

z1
z1−z2 ,

ur0 =− sgn(z1R1 + z2R2)

√
2

(
R1 +R2 +

z1 − z2
z1z2

(z1R1)
−z2

z1−z2 (−z2R2)
z1

z1−z2

)
;

φR1 =
1− λ
z1 − z2

(R1 +R2 − cR10 − cR20),

z1c
R
11 =− z2cR21 = z1c

R
10

(
R1 + λR2 +

λz1 − z2
z1 − z2

(R1 +R2) +
2(λz1 − z2)

z2
cR10

)
,

ur1 =
(R1 +R2)(R1 + λR2)− (cR10 + cR20)(c

R
10 + λcR20)− cR11 − cR21

ur0
.

Remark 3.3. When z1L1 + z2L2 = 0, ul0 = 0. In this case, ul1 is defined as the limit
of its expression as z1L1 + z2L2 → 0 and it is zero. Similar remark applies to ur1
when z1R1 + z2R2 = 0.

Proof. The stated result for system (3.8) has been obtained in [22, 51, 52]. For system
(3.9), one can check that it has three nontrivial first integrals:

F1 =z1φ1 +
c11
c10

+ 2c10 + (λ+ 1)c20,

F2 =z2φ1 +
c21
c20

+ 2λc20 + (λ+ 1)c10,

F3 =u0u1 − c11 − c21 − (λ+ 1)c10c20 − c210 − λc220.

We now establish the results for φL1 , c
L
11, c

L
21 and ul1 for system (3.9). Those for

φR1 , c
R
11, c

R
21 and ur1 can be established in the similar way.

We note that φ1(0) = c11(0) = c21(0) = 0. Using the integrals F1 and F2, we have

z1φ1 +
c11
c10

+ 2c10 + (λ+ 1)c20 = 2L1 + (λ+ 1)L2,

z2φ1 +
c21
c20

+ 2λc10 + (λ+ 1)c10 = 2λL2 + (λ+ 1)L1.

Therefore

c11 =c10 (2L1 + (λ+ 1)L2 − 2c10 − (λ+ 1)c20 − z1φ1) ,
c21 =c20 (2λL2 + (λ+ 1)L1 − 2λc20 − (λ+ 1)c10 − z2φ1) .

12



Taking the limit as ξ →∞, we have

φL1 =
1− λ
z1 − z2

(L1 + L2 − cL10 − cL20),

cL11 =cL10
(
2L1 + (λ+ 1)L2 − 2cL10 − (λ+ 1)cL20 − z1φL1

)
,

cL21 =cL20
(
2λL2 + (λ+ 1)L1 − 2λcL20 − (λ+ 1)cL10 − z2φL1

)
.

In view of the relations z1c
L
10 + z2c

L
20 = z1c

L
11 + z2c

L
21 = 0, one can get the formulas

for cL11, c
L
21 and φL1 . We now derive the formula for ul1 = u1(0).

In view of F3(0) = F3(∞), we have

ul0u
l
1 − (λ+ 1)L1L2 − L2

1 − λL2
2 = −cL11 − cL21 − (λ+ 1)cL10c

L
20 − (cL10)

2 − λ(cL20)
2.

The formula for ul1 follows directly.

For later use, let Γ0 denote the potential boundary layer at x = 0 for system (3.5)
and Let Γ1 denote the potential boundary layer at x = 1 for system (3.5).

Corollary 3.4. Under electroneutrality boundary conditions, that is, z1L1 = −z2L2 =
L and z1R1 = −z2R2 = R,

φL0 = V̄ , z1c
L
10 = −z2cL20 = L; φR0 = 0, z1c

R
10 = −z2cR20 = R,

φL1 = cL11 = cL21 = φR1 = cR11 = cR21 = 0.

In particular, up to O(d), there is no boundary layer at x = 0 and x = 1.

3.1.2 Limiting slow dynamics and regular layer

Next we construct the regular layer on Z that connects ω(NL) and α(NR). Note that,
for ε = 0, system (3.1) loses most information. To remedy this degeneracy, we follow
the idea in [22, 51, 52] and make a rescaling u = εp and −z2c2 = z1c1 + εq in system
(3.1). In term of the new variables, system (3.1) becomes

φ̇ =p, εṗ = q − εhτ (τ)

h(τ)
p, εq̇ = (z1f1 − z2f2) p+

z1g1 + z2g2
h(τ)

,

ċ1 =− f1p−
g1
h(τ)

, J̇1 = J̇2 = 0, τ̇ = 1
(3.10)

where, for i = 1, 2,

fi = fi

(
c1,−

z1c1 + εq

z2
; d, λd

)
and gi = gi

(
c1,−

z1c1 + εq

z2
, J1, J2; d, λd

)
.

It is again a singular perturbation problem and its limiting slow system is

q =0, p = − 1

z1(z1 − z2)h(τ)c1

2∑
i=1

zigi
(
c1,−

z1
z2
c1, J1, J2; d, λd

)
,

φ̇ =p,

ċ1 =− f1
(
c1,−

z1
z2
c1; d, λd

)
p− 1

h(τ)
g1
(
c1,−

z1
z2
c1, J1, J2; d, λd

)
,

J̇1 =J̇2 = 0, τ̇ = 1.

(3.11)
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In the above, for the expression for p, we have used (2.12) to find

z1f1

(
c1,−

z1c1
z2

; d, λd
)
− z2f2

(
c1,−

z1c1
z2

; d, λd
)

= z1(z1 − z2)c1.

From system (3.11), the slow manifold is

S =

{
q = 0, p = −

z1g1
(
c1,− z1

z2
c1, J1, J2; d, λd

)
+ z2g2

(
c1,− z1

z2
c1, J1, J2; d, λd

)
z1(z1 − z2)h(τ)c1

}
.

Therefore, the limiting slow system on S is

φ̇ =p,

ċ1 =− f1
(
c1,−

z1
z2
c1; d, λd

)
p− 1

h(τ)
g1
(
c1,−

z1
z2
c1, J1, J2; d, λd

)
,

J̇1 =J̇2 = 0, τ̇ = 1,

(3.12)

where

p = −
z1g1

(
c1,− z1

z2
c1, J1, J2; d, λd

)
+ z2g2

(
c1,− z1

z2
c1, J1, J2; d, λd

)
z1(z1 − z2)h(τ)c1

.

As for the layer problem, we look for solutions of (3.12) of the form

φ(x) = φ0(x) + φ1(x)d+ o(d),

c1(x) = c10(x) + c11(x)d+ o(d),

J1 = J10 + J11d+ o(d), J2 = J20 + J21d+ o(d)

(3.13)

to connect ω(NL) and α(NR) given in Proposition 3.2; in particular, for j = 0, 1,

(φj(0), c1j(0)) =
(
φLj , c

L
1j

)
, (φj(1), c1j(1)) =

(
φRj , c

R
1j

)
.

From system (3.12) and the definitions of fj ’s and gj ’s in (2.12), we have

φ̇0 =− z1J10 + z2J20
z1(z1 − z2)h(τ)c10

, ċ10 =
z2 (J10 + J20)

(z1 − z2)h(τ)
,

J̇10 =J̇20 = 0, τ̇ = 1,

(3.14)

and

φ̇1 =
(z1J10 + z2J20)c11
z1(z1 − z2)h(τ)c210

+
z1(1− λ)(J10 + J20)c10 − (z1J11 + z2J21)

z1(z1 − z2)h(τ)c10
,

ċ11 =
2(λz1 − z2)(J10 + J20)c10 + z2(J11 + J21)

(z1 − z2)h(τ)
,

J̇11 =J̇21 = 0, τ̇ = 1.

(3.15)

For convenience, we denote

H(x) =

∫ x

0
h−1(s)ds. (3.16)
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Lemma 3.5. There is a unique solution (φ0(x), c10(x), J10, J20, τ(x)) of (3.14) such
that

(φ0(0), c10(0), τ(0)) = (φL0 , c
L
10, 0) and (φ0(1), c10(1), τ(1)) = (φR0 , c

R
10, 1), (3.17)

where φL0 , φR0 , cL10, and cR10 are given in Proposition 3.2. It is given by

φ0(x) =φL0 +
φR0 − φL0

ln cR10 − ln cL10
ln

(
1− H(x)

H(1)
+
H(x)

H(1)

cR10
cL10

)
,

c10(x) =

(
1− H(x)

H(1)

)
cL10 +

H(x)

H(1)
cR10,

J10 =
cL10 − cR10
H(1)

(
1 +

z1
(
φL0 − φR0

)
ln cL10 − ln cR10

)
,

J20 =− z1(c
L
10 − cR10)
z2H(1)

(
1 +

z2
(
φL0 − φR0

)
ln cL10 − ln cR10

)
,

τ(x) =x.

Proof. The solution of system (3.14) with the initial condition (φL0 , c
L
10, J10, J20, 0)

that corresponds to the point (φL0 , 0, c
L
10, c

L
20, J10, J20, 0) is

φ0(x) = φL0 −
z1J10 + z2J20
z1(z1 − z2)

∫ x

0
h−1(s)c−110 (s)ds,

c10(x) = cL10 +
z2 (J10 + J20)

z1 − z2
H(x), τ(x) = x.

(3.18)

It follows from the c10-equation and c10(1) = cR10 that

J10 + J20 = −(z1 − z2)(cL10 − cR10)
z2H(1)

. (3.19)

Note that, from (3.14),∫ x

0
h−1(s)c−110 (s)ds =

z1 − z2
z2(J10 + J20)

∫ x

0

ċ10(s)

c10(s)
ds = H(1)

ln cL10 − ln c10(x)

cL10 − cR10
.

Thus,

φ0(x) = φL0 −H(1)
z1J10 + z2J20
z1(z1 − z2)

ln cL10 − ln c10(x)

cL10 − cR10
.

Applying the boundary condition c10(1) = cR10 and φ0(1) = φR0 , we have

J10 + J20 =− (z1 − z2)(cL10 − cR10)
z2H(1)

,

z1J10 + z2J20 =
z1(z1 − z2)(cL10 − cR10)(φL0 − φR0 )

H(1)(ln cL10 − ln cR10)
.

(3.20)

The expressions for J10 and J20, and hence, for φ0(x) and c10(x) follow directly.

15



For convenience, we define three functions

M = M(L1, L2, R1, R2;λ), N = N(L1, L2, R1, R2;λ), P (x) = P (x;L1, L2, R1, R2;λ)

as

M =z1c
L
10w(L1, L2)− z1cR10w(R1, R2) +

z1(λz1 − z2)
z2

(
(cL10)

2 − (cR10)
2
)
,

N =
z1(c

L
10 − cR10)

ln cL10 − ln cR10
(φL1 − φR1 )− (1− λ)z1

z2

(cL10 − cR10)2

ln cL10 − ln cR10
+

φL0 − φR0
ln cL10 − ln cR10

M

− z1(c
L
10 − cR10)(w(L1, L2)− w(R1, R2))

(ln cL10 − ln cR10)
2

(φL0 − φR0 ),

P (x) =
λz1 − z2

z2

(cL10 − cR10)H(x)

(ln cL10 − ln cR10)H(1)

+
cL10 − c10(x)

ln cL10 − ln cR10

(
w(L1, L2)

c10(x)
+
λz1 − z2

z2

cL10
c10(x)

)
− H(x)

z1(ln cL10 − ln cR10)c10(x)H(1)
M +

ln cL10 − ln c10(x)

z1(ln cL10 − ln cR10)(c
L
10 − cR10)

M

(3.21)

where

w(α, β) = α+ λβ +
λz1 − z2
z1 − z2

(α+ β).

Lemma 3.6. There is a unique solution (φ1(x), c11(x), J11, J21, τ(x)) of (3.15) such
that

(φ1(0), c11(0), τ(0)) = (φL1 , c
L
11, 0) and (φ1(1), c11(1), τ(1)) = (φR1 , c

R
11, 1), (3.22)

where φL1 , φR1 , cL11, and cR11 are given in Proposition 3.2. It is given by

φ1(x) =φL1 −
(1− λ)(cL10 − cR10)H(x)

z2H(1)
+ (φL0 − φR0 )P (x)− ln c10(x)− ln cL10

z1(z1 − z2)(cR10 − cL10)
N,

c11(x) =cL11 +
λz1 − z2

z2

(
c210(x)− (cL10)

2
)
− H(x)

z1H(1)
M,

J11 =
M

z1H(1)
+

N

H(1)
, J21 = − M

z2H(1)
− N

H(1)
,

where M , N , and P are defined in (3.21).

Proof. It follows from (3.15) that

c11(x) =cL11 +
λz1 − z2

z2

(
c210(x)− (cL10)

2
)

+
z2(J11 + J21)

z1 − z2
H(x).

Thus, from Proposition 3.2,

z2(J11 + J21)

z2 − z1
H(1) =cL11 − cR11 +

λz1 − z2
z2

(
(cR10)

2 − (cL10)
2
)

=cL10w(L1, L2)− cR10w(R1, R2) +
λz1 − z2

z2

(
(cL10)

2 − (cR10)
2
)
,
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or, by the definition of M in (3.21),

J11 + J21 =
z2 − z1
z1z2H(1)

M. (3.23)

Hence,

c11(x) = cL11 +
λz1 − z2

z2

(
c210(x)− (cL10)

2
)
− H(x)

z1H(1)
M. (3.24)

Again, from (3.15)

φ1(x) =φL1 +
z1J10 + z2J20
z1(z1 − z2)

∫ x

0

c11(s)

h(s)c210(s)
ds+

(1− λ)(J10 + J20)

z1 − z2
H(x)

− z1J11 + z2J21
z1(z1 − z2)

∫ x

0

1

h(s)c10(s)
ds.

Note that, from (3.14) and (3.19),∫ x

0

c10(s)

h(s)
ds =

z1 − z2
z2(J10 + J20)

∫ x

0
c10(s)ċ10(s)ds =

H(1)

2

(cL10)
2 − c210(x)

cL10 − cR10
,∫ x

0

1

h(s)c210(s)
ds =

z1 − z2
z2(J10 + J20)

∫ x

0

ċ10(s)

c210(s)
ds = H(1)

cL10 − c10(x)

(cL10 − cR10)cL10c10(x)
,∫ x

0

∫ s
0 h
−1(σ)dσ

h(s)c210(s)
ds =− z1 − z2

z2(J10 + J20)

∫ x

0

∫ s

0
h−1(σ)dσ

d

ds
c−110 (s)ds

=
H(1)

cL10 − cR10

(
H(x)

c10(x)
−
∫ x

0
h−1(s)c−110 (s)ds

)
=

H(1)H(x)

(cL10 − cR10)c10(x)
−H2(1)

ln cL10 − ln c10(x)

(cL10 − cR10)2
.

These, together with (3.24) and (3.20), yield∫ x

0

c11(s)

h(s)c210(s)
ds =

(
w(L1, L2) +

λz1 − z2
z2

cL10

)
H(1)(cL10 − c10(x))

(cL10 − cR10)c10(x)

+
λz1 − z2

z2
H(x)− M

z1(cL10 − cR10)

(
H(x)

c10(x)
− ln cL10 − ln c10(x)

cL10 − cR10
H(1)

)
.

A careful calculation then gives

φ1(x) =φL1 −
(1− λ)(cL10 − cR10)H(x)

z2H(1)
+ (φL0 − φR0 )P (x)

− z1J11 + z2J21
z1(z1 − z2)

ln cL10 − ln c10(x)

cL10 − cR10
H(1).
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Hence,

φR1 =φL1 −
1− λ
z2

(cL10 − cR10) + (φL0 − φR0 )P (1)

− z1J11 + z2J21
z1(z1 − z2)

ln cL10 − ln cR10
cL10 − cR10

H(1)

=φL1 −
1− λ
z2

(cL10 − cR10)−
w(L1, L2)− w(R1, R2)

ln cL10 − ln cR10
(φL0 − φR0 )

+
M(φL0 − φR0 )

z1(cL10 − cR10)
− (z1J11 + z2J21)(ln c

L
10 − ln cR10)

z1(z1 − z2)(cL10 − cR10)
H(1).

Thus,

H(1)
z1J11 + z2J21

z1 − z2
= z1

cL10 − cR10
ln cL10 − ln cR10

(φL1 − φR1 )− (1− λ)z1
z2

(cL10 − cR10)2

ln cL10 − ln cR10

+
M(φL0 − φR0 )

ln cL10 − ln cR10
− z1

(cL10 − cR10)(w(L1, L2)− w(R1, R2))

(ln cL10 − ln cR10)
2

(φL0 − φR0 ) = N.

Formulas for J11, J21, and φ1 follow directly.

Corollary 3.7. Under the electroneutrality conditions at the boundaries, that is,
z1L1 = −z2L2 = L and z1R1 = −z2R2 = R, we have,

J10 =
L−R
z1H(1)

(
1 +

z1V̄

lnL− lnR

)
, J20 =

L−R
z2H(1)

(
1 +

z2V̄

lnL− lnR

)
;

J11 =
λz1 − z2
z1z2H(1)

R− L
lnR− lnL

(
2(R− L)

lnR− lnL
− (R+ L)

)
V̄

+
1− λ

z1z2H(1)

(R− L)2

lnR− lnL
+

λz1 − z2
z21z2H(1)

(
R2 − L2

)
,

J21 =− λz1 − z2
z1z2H(1)

R− L
lnR− lnL

(
2(R− L)

lnR− lnL
− (R+ L)

)
V̄

− 1− λ
z1z2H(1)

(R− L)2

lnR− lnL
− λz1 − z2
z1z22H(1)

(
R2 − L2

)
.

Proof. This follows directly from Lemmas 3.5 and 3.6 and Proposition 3.2.

The slow orbit, up to O(d),

Λ(x; d) = (φ0(x) + φ1(x)d, c10(x) + c11(x)d, J10 + J11d, J20 + J21d, τ(x)) (3.25)

given in Lemmas 3.5 and 3.6 connects ω(NL) and α(NR). Let M̄L (resp., M̄R) be the
forward (resp., backward) image of ω(NL) (resp., α(NR)) under the slow flow (3.12)
on the five-dimensional slow manifold S. Following the idea in [51], we have

Proposition 3.8. There exists d0 > 0 small depending on boundary conditions so
that, if 0 ≤ d ≤ d0, then, on the five-dimensional slow manifold S, M̄L and M̄R

intersects transversally along the unique orbit Λ(x; d) given in (3.25).
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Proof. To see the transversality of the intersection, it suffices to show that ω(NL) · 1
(the image of ω(NL) under the time-one map of the flow of system (3.12)) is transver-
sal to α(NR) on S

⋂
{τ = 1}. We will show first that, for d = 0, ω(NL) · 1 and α(NR)

intersect transversally on S
⋂
{τ = 1}. We will use (φ, c1, J1, J2) as a coordinate

system on S
⋂
{τ = 1}. It follows from (3.18) that, for d = 0, ω(NL) · 1 is given by

ω(NL) · 1 = {(φ(J1, J2), c1(J1, J2), J1, J2) : arbitrary J1, J2}

with

φ(J1, J2) =φL0 −
z1J1 + z2J2
z1z2(J1 + J2)

ln
c1(J1, J2)

cL10
,

c1(J1, J2) =cL10 +
z2H(1)(J1 + J2)

z1 − z2
.

Thus, the tangent space to ω(NL) · 1 restricted on S
⋂
{τ = 1} is spanned by the

vectors

(φJ1 , (c1)J1 , 1, 0) =

(
φJ1 ,

z2
z1 − z2

H(1), 1, 0

)
and

(φJ2 , (c1)J2 , 0, 1) =

(
φJ2 ,

z2
z1 − z2

H(1), 0, 1

)
.

In view of the display in Proposition 3.2, the set α(NR) is parameterized by J1 and
J2, and hence, the tangent space to α(NR) restricted on S

⋂
{τ = 1} is spanned by

(0,0,1,0) and (0,0,0,1). Note that S
⋂
{τ = 1} is four dimensional. Thus, it suffices to

show that the above four vectors are linearly independent or, equivalently, φJ1 6= φJ2
at (J1, J2) = (J10, J20). The latter can be verified by a direct computation as follows:

φJ1 − φJ2 = − z1 − z2
z1z2(J1 + J2)

ln

[
1 +

z2(J1 + J2)

(z1 − z2)cL10
H(1)

]
6= 0,

even as J1 + J2 → 0. This establishes the transversal intersection of ω(NL) · 1 and
α(NR) on S

⋂
{τ = 1}. From the smooth dependence of solutions on parameter d,

we conclude that there exists d0 > 0 small, so that, if 0 ≤ d ≤ d0, then ω(NL) · 1 and
α(NR) intersect transversally on S

⋂
{τ = 1}. This completes the proof.

3.2 Existence of solutions near the singular orbit

We have constructed a unique singular orbit on [0,1] that connects BL to BR. It
consists of two boundary layer orbits Γ0 from the point

(V̄ , ul0 + ul1d+ o(d), L1, L2, J10 + J11d+ o(d), J20 + J21d+ o(d), 0) ∈ BL

to the point
(φL, 0, cL1 , c

L
2 , J1, J2, 0) ∈ ω(NL) ⊂ Z

and Γ1 from the point

(φR, 0, cR1 , c
R
2 , J1, J2, 1) ∈ z1(NR) ⊂ Z
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to the point
(0, ur0 + ur1 + o(d), R1, R2, J1, J2, 1) ∈ BR,

and a regular layer Λ on Z that connects the two landing points

(φL, 0, cL1 , c
L
2 , J1, J2, 0) ∈ ω(NL)

and
(φR, 0, cR1 , c

R
2 , J1, J2, 1) ∈ α(NR)

of the two boundary layers.
We now establish the existence of a solution of (2.11) and (2.13) near the singular

orbit constructed above which is a union of two boundary layers and one regular layer
Γ0
⋃

Λ
⋃

Γ1. The proof follows the same line as that in [22, 51, 52] and the main tool
used is the Exchange Lemma (see, for example [44, 45, 46, 80]) of the geometric
singular perturbation theory.

Theorem 3.9. Let Γ0
⋃

Λ
⋃

Γ1 be the singular orbit of the connecting problem system
(3.1) associated to BL and BR in system (3.3). Let d0 > 0 be as in Proposition 3.8.
Then, there exists ε0 > 0 small (depending on the boundary conditions and d0) so
that, if 0 ≤ d ≤ d0 and 0 < ε ≤ ε0, then the boundary value problem (2.11) and
(2.13) has a unique smooth solution near the singular orbit Γ0

⋃
Λ
⋃

Γ1.

Proof. Let d0 > 0 be as in Proposition 3.8. For 0 ≤ d ≤ d0, denote ul = ul0 + ul1d,
J1(d) = J10 + J11d and J2(d) = J20 + J21d. Fix δ > 0 small to be determined. Let

BL(δ) = {(V̄ , u, L1, L2, J1, J2, 0) ∈ R7 : |u− ul| < δ, |Ji − Ji(d)| < δ}.

For ε > 0, let ML(ε, δ) be the forward trace of BL(δ) under the flow of system (3.1)
or equivalently of system (3.2) and let MR(ε) be the backward trace of BR. To prove
the existence and uniqueness statement, it suffices to show that ML(ε, δ) intersects
MR(ε) transversally in a neighborhood of the singular orbit Γ0

⋃
Λ
⋃

Γ1. The latter
will be established by an application of Exchange Lemmas.

Note that dimBL(δ)=3. It is clear that the vector field of the fast system (3.2)
is not tangent to BL(δ) for ε ≥ 0, and hence, dimML(ε, δ)=4. We next apply Ex-
change Lemma to track ML(ε, δ) in the vicinity of Γ0

⋃
Λ
⋃

Γ1. First of all, the
transversality of the intersection BL(δ)

⋂
W s(Z) along Γ0 in Proposition 3.2 implies

the transversality of intersection ML(0, δ)
⋂
W s(Z). Secondly, we have also estab-

lished that dimω(NL) = dimNL − 1 = 2 in Proposition 3.2 and that the limiting
slow flow is not tangent to ω(NL) in Section 3.1.2. With these conditions, Exchange
Lemma ([44, 45, 46, 80]) states that there exist ρ > 0 and ε1 > 0 so that, if 0 < ε ≤ ε1,
then ML(ε, δ) will first follow Γ0 toward ω(NL) ⊂ Z, then follow the trace of ω(NL) in
the vicinity of Λ toward {τ = 1}, leave the vicinity of Z, and, upon exit, a portion of
ML(ε, δ) is C1 O(ε)-close to W u(ω(NL)×(1−ρ, 1+ρ)) in the vicinity of Γ1 (see Figure
2 for an illustration). Note that dimW u(ω(NL)× (1− ρ, 1 + ρ)) = dimML(ε, δ) = 4.

It remains to show that W u(ω(NL)× (1−ρ, 1+ρ)) intersects MR(ε) transversally
since ML(ε, δ) is C1 O(ε)-close to W u(ω(NL) × (1 − ρ, 1 + ρ)). Recall that, for
ε = 0, MR intersects W u(Z) transversally along NR (Proposition 3.2); in particular,
at γ1 := α(Γ1) ∈ α(NR) ⊂ Z, we have

Tγ1MR = Tγ1α(NR) + Tγ1W
u(γ1) + span{Vs}
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Figure 2: Illustration of the evolution of ML(ε, δ) from the vicinity of τ = 0 to that of
τ = 1: On the left, ML(ε, δ) intersects W s(Z) transversally and approaches ω(NL) in
the vicinity of Γ0; It then follows the trace of ω(NL) in the vicinity of Λ on Z toward
the vicinity of ω(NL) · (1− ρ, 1 + ρ); A portion of it will leave the vicinity of Z, and,
upon exit from Z, ML(ε, δ) is C1 O(ε)-close to W u(ω(NL) × (1 − ρ, 1 + ρ)) in the
vicinity of Γ1. In the figure, W u(ω(NL)× (1− ρ, 1 + ρ)) is denoted by W u.

where, Tγ1W
u(γ1) is the tangent space of the one-dimensional unstable fiber W u(γ1)

at γ1 and the vector Vs 6∈ Tγ1W u(Z) (the latter follows from the transversality of the
intersection of MR and W u(Z)). Also,

Tγ1W
u(ω(NL)× (1− ρ, 1 + ρ)) = Tγ1(ω(NL) · 1) + span{Vτ}+ Tγ1W

u(γ1)

where the vector Vτ is the tangent vector to the τ -axis as the result of the inter-
val factor (1 − ρ, 1 + ρ). Recall from Proposition 3.8 that ω(NL) · 1 and α(NR)
are transversal on Z ∩ {τ = 1}. Therefore, at γ1, the tangent spaces Tγ1MR and
Tγ1W

u(ω(NL) × (1 − ρ, 1 + ρ)) contain seven linearly independent vectors: Vs, Vτ ,
Tγ1W

u(γ1) and the other four from Tγ1(ω(NL) · 1) and Tγ1α(NR); that is, MR and
W u(ω(NL)×(1−ρ, 1+ρ)) intersect transversally. We thus conclude that, there exists
0 < ε0 ≤ ε1 so that, if 0 < ε ≤ ε0, then ML(ε, δ) intersects MR(ε) transversally.

For uniqueness, note that the transversality of the intersection ML(ε, δ)
⋂
MR(ε)

implies dim(ML(ε, δ)
⋂
MR(ε)) = dimML(ε, δ) + dimMR(ε) − 7 = 1. Thus, there

exists δ0 > 0 such that, if 0 < δ ≤ δ0, the intersection ML(ε, δ)
⋂
MR(ε) consists of

precisely one solution near the singular orbit Γ0
⋃

Λ
⋃

Γ1.

4 Ion size effects on the flows of charge and matter

The analysis in the previous sections not only establishes the existence of solutions
for the boundary value problem (2.11) and (2.13) but also provides quantitative in-
formation on the solution that allows us to extract explicit approximations to the
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current I and the flow rate of matter, T , for small ε and d. From the explicit approx-
imations, we are able to identify some critical values for potential V that characterize
ion size effects on the ionic flow. A number of scaling laws will be also obtained.
Their consequences of ion size effects are discussed.

4.1 I-V relation, critical potentials, and scaling laws

4.1.1 I-V relation and its approximation

For fixed boundary concentrations L1, L2, R1 and R2 in (2.2), we express the I-V
relation in (4.1) as

I(V ;λ, ε, d) = I0(V ; ε) + I1(V ;λ, ε)d+ o(d), (4.1)

where I0(V ; ε) is the I-V relation without counting the ion size effect and I1(V ;λ, ε)d
is the leading term containing ion size effect on I-V relation.

Recall that we denote H(1) =
∫ 1
0 h
−1(s)ds in (3.16).

Theorem 4.1. In formula (4.1), one has

I0(V ; 0) =ρ00(L1, L2, R1, R2) + ρ01(L1, L2, R1, R2)
e

kT
V,

I1(V ;λ, 0) =ρ10(L1, L2, R1, R2, λ) + ρ11(L1, L2, R1, R2;λ)
e

kT
V,

where

ρ00 =
z1(D1 −D2)(c

L
10 − cR10)

H(1)
+
z1(z1D1 − z2D2)(c

L
10 − cR10)

H(1)(ln cL10 − ln cR10)
ln
L1R2

L2R1
,

ρ01 =
z1(z1D1 − z2D2)(c

L
10 − cR10)

H(1)(ln cL10 − ln cR10)
,

ρ10 =
z1(D1 −D2)

H(1)

[
cL10w(L1, L2)− cR10w(R1, R2) +

λz1 − z2
z2

(
(cL10)

2 − (cR10)
2
)]

− z1(z1D1 − z2D2)

H(1)

[
1− λ
z2

(cL10 − cR10)2

ln cL10 − ln cR10
− cL10 − cR10

ln cL10 − ln cR10
(φL1 − φR1 )

]
+
z1(z1D1 − z2D2)

(z1 − z2)H(1)

cL10w(L1, L2)− cR10w(R1, R2)

ln cL10 − ln cR10
ln
L1R2

L2R1

+
z1(λz1 − z2)(z1D1 − z2D2)

(z1 − z2)z2H(1)

(cL10)
2 − (cR10)

2

ln cL10 − ln cR10
ln
L1R2

L2R1

− z1(z1D1 − z2D2)

(z1 − z2)H(1)

(cL10 − cR10)(w(L1, L2)− w(R1, R2))

(ln cL10 − ln cR10)
2

ln
L1R2

L2R1
,

ρ11 =
z1(z1D1 − z2D2)

H(1)

cL10w(L1, L2)− cR10w(R1, R2)

ln cL10 − ln cR10

+
z1(λz1 − z2)(z1D1 − z2D2)

z2H(1)

(cL10)
2 − (cR10)

2

ln cL10 − ln cR10

− z1(z1D1 − z2D2)

H(1)

(cL10 − cR10)(w(L1, L2)− w(R1, R2))

(ln cL10 − ln cR10)
2

,
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where cL10, cR10, φL1 and φR1 are given in Proposition 3.2 and

w(α, β) = α+ λβ +
λz1 − z2
z1 − z2

(α+ β).

Proof. For the zeroth order in ε, it follows from

I(V ;λ, 0, d) =z1J1 + z2J2 = z1D1J1 + z2D2J2

= (z1D1J10 + z2D2J20) + (z1D1J11 + z2D2J21) d+ o(d)
(4.2)

that

I0(V ; 0) = z1D1J10 + z2D2J20 and I1(V ;λ, 0) = z1D1J11 + z2D2J21.

The formulas for I0(V ; 0) and I1(V ; 0) follow directly from Lemmas 3.5 and 3.6.

Corollary 4.2. Under the electroneutrality conditions z1L1 = −z2L2 = L and
z1R1 = −z2R2 = R, one has

I0(V ; 0) =
(D1 −D2)(L−R)

H(1)
+

(z1D1 − z2D2)(L−R)

H(1)(lnL− lnR)

e

kT
V,

I1(V ;λ, 0) =
(λz1 − z2)(D2 −D1)(L

2 −R2)

z1z2H(1)
− (1− λ)(z1D1 − z2D2)(L−R)2

z1z2H(1)(lnL− lnR)

− (λz1 − z2)(z1D1 − z2D2)(L−R)2

z1z2H(1)(lnL− lnR)2

(
(L+R)(lnL− lnR)

L−R
− 2

)
e

kT
V.

In particular, for fixed R > 0, one has

lim
L→R

I0(V ; 0) =
(z1D1 − z2D2)R

H(1)

e

kT
V and lim

L→R
I1(V ;λ, 0) = 0.

Proof. Assume z1L1 = −z2L2 = L and z1R1 = −z2R2 = R. It can be checked
directly that

ρ00 =
(D1 −D2)(L−R)

H(1)
, ρ01 =

(z1D1 − z2D2)(L−R)

H(1)(lnL− lnR)
,

ρ10 =
(λz1 − z2)(D2 −D1)(L

2 −R2)

z1z2H(1)
− (1− λ)(z1D1 − z2D2)(L−R)2

z1z2H(1)(lnL− lnR)
,

ρ11 =− (λz1 − z2)(z1D1 − z2D2)(L−R)2

z1z2H(1)(lnL− lnR)2

(
(L+R)(lnL− lnR)

L−R
− 2

)
.

(4.3)

The formulas for I0(V ; 0) and I1(V ; 0) then follow easily. The two limits can be shown
easily too.

Remark 4.3. The above formulas for I0(V ; 0) and I1(V ;λ, 0) agree with those in
[43] except for a factor 2H(1). The factor H(1) does not appear in [43] since it is
assumed there that h(x) = 1, and hence, H(1) = 1. The factor 2 in front of H(1) is
due to the fact that we are expending the I-V relation in the diameter d here instead
of the radius r in [43]. As we mentioned in the introduction that there is a major
difference between the analysis for the local hard sphere in this paper and that for the
nonlocal model in [43]. Nevertheless, the agreement on I0(V ; 0) and I1(V ;λ, 0) is not
a surprise since we are using the local hard sphere potential which is obtained as the
expansion in the variable d from the nonlocal one used in [43].
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4.1.2 Critical potentials and ion size effects on I-V relations

Based on the approximation of I-V relations in Theorem 4.1, we will identify three
critical potentials and discuss their roles in characterizing ion size effects on I-V
relations.

Definition 4.4. We define three potentials V0, Vc and V c by

I0(V0; 0) = 0, I1(Vc;λ, 0) = 0,
d

dλ
I1(V

c;λ, 0) = 0.

For ion channels, the reversal potential is defined to be the potential V so that
I(V ;λ, ε) = 0. Thus, the potential V0 is simply the zeroth order approximation in
ε and d of the reversal potential. The critical potentials Vc and V c are examined
for the first time in [43] for a nonlocal hard-sphere model. The significance of the
two critical values Vc and V c is apparent from their definitions. The value Vc is the
potential that balances ion size effect on I-V relations and the value V c is the potential
that separates the relative size effect on I-V relations. We provide precise statements
below. First of all, note that I1(V ;λ, 0) is affine in V and in λ. Thus, quantities
∂V I1(V ;λ, 0) and Vc depend on the boundary conditions L1, L2, R1, R2 and the ratio
λ of ion sizes only; ∂2V λI1(V ;λ, 0) and V c depend on the boundary conditions L1, L2,
R1, R2 but not on λ.

Theorem 4.5. Suppose ∂V I1(V ;λ, 0) > 0 (resp. ∂V I1(V ;λ, 0) < 0).
If V > Vc (resp. V < Vc), then, for small ε > 0 and d > 0, the ion sizes enhance

the current I; that is, I(V ; ε, d) > I(V ; ε, 0);
If V < Vc (resp. V > Vc), then, for small ε > 0 and d > 0, the ion sizes reduce

the current I; that is, I(V ; ε, d) < I(V ; ε, 0).

Theorem 4.6. Suppose ∂2V λI1(V ;λ, 0) > 0 (resp. ∂2V λI1(V ;λ, 0) < 0).
If V > V c (resp. V < V c), then, for small ε > 0 and d > 0, the larger the

negatively charged ion the larger the current; that is, the current I is increasing in λ;
If V < V c (resp. V > V c), then, for small ε > 0 and d > 0, the smaller the

negatively charged ion the larger the current; that is, the current I is decreasing in λ.

The following result in [43] can be checked easily.

Proposition 4.7. Assume electroneutrality conditions z1L1 = −z2L2 = L and
z1R1 = −z2R2 = R, and L 6= R. Then,

∂V I1(V ;λ, 0) > 0 and ∂2V λI1(V ;λ, 0) > 0.

As R→ L, ∂V I1(V ;λ, 0)→ 0 and ∂2V λI1(V ;λ, 0) = O((L−R)2).

While both ∂V I1(V ;λ, 0) and ∂2V λI1(V ;λ, 0) are non-negative under electroneu-
trality conditions, in general, they can be negative. We do not have a complete result
for the general case but the following partial result.

Proposition 4.8. For any L > 0, R∗1 > 0 and R∗2 > 0 with R∗1R
∗
2 = L2, as

(R1, R2)→ (R∗1, R
∗
2),

∂V I1(V ;λ, 0) =
e

kT
ρ11(L,L,R1, R2;λ)

→ e(D1 +D2)L

4kTH(1)R∗1
(R∗1 − L) ((3 + λ)R∗1 − (1 + 3λ)L) .
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The latter is negative if

either L < R∗1 <
1 + 3λ

3 + λ
L for λ > 1 or

1 + 3λ

3 + λ
L < R∗1 < L for λ < 1.

As (R1, R2)→ (R∗1, R
∗
2),

∂V λI1(V ;λ, 0) =
e

kT
∂λρ11(L,L,R1, R2;λ)→ e(D1 +D2)L

4kTH(1)R∗1
(R∗1 − L) (R∗1 − 3L) .

The latter is negative if L < R∗1 < 3L.

Proof. For z1 = −z2 = 1, we have

∂V I1(V ;λ, 0) =
e

kT
ρ11(L1, L2, R1, R2;λ),

=
2e(D1 +D2)

kTH(1)

R
1/2
1 R

1/2
2 w(R1, R2)− L1/2

1 L
1/2
2 w(L1, L2)

ln(R1R2)− ln(L1L2)

− 2e(1 + λ)(D1 +D2)

kTH(1)

R1R2 − L1L2

ln(R1R2)− ln(L1L2)

− 4e(D1 +D2)

kTH(1)

R
1/2
1 R

1/2
2 − L1/2

1 L
1/2
2

ln(R1R2)− ln(L1L2)

w(R1, R2)− w(L1, L2)

ln(R1R2)− ln(L1L2)
.

Recall from Theorem 4.1 that, for z1 = −z2 = 1,

w(α, β) = α+ λβ +
1 + λ

2
(α+ β).

For fixed a > 0 and b > 0, we set

ρ(x, y; a, b) =
H(1)

D1 +D2
ρ11(a

2, b2;x2, y2;λ).

Then, a direct calculation yields

ρ(x, y; a, b) =
xy − ab

ln(xy)− ln(ab)
w1(x

2, y2)− (1 + λ)
x2y2 − a2b2

ln(xy)− ln(ab)

− xy − ab− ab(ln(xy)− ln(ab))

(ln(xy)− ln(ab))2
(w1(x

2, y2)− w1(a
2, b2)).

Note that, as z = xy → ab,

z − ab
ln z − ln(ab)

→ ab,
z − ab− ab(ln z − ln(ab))

(ln z − ln(ab))2
→ ab

2
,

z2 − a2b2

ln z − ln(ab)
→ 2a2b2.

Thus, as x→ x0 and y → y0 with x0y0 = ab,

ρ(x, y; a, b)→ abw1(x
2
0, y

2
0)− ab

2

(
w1(x

2
0, y

2
0)− w1(a

2, b2)
)
− 2(1 + λ)a2b2

=
ab

2

(
w1(x

2
0, y

2
0) + w1(a

2, b2)
)
− 2(1 + λ)a2b2

=
ab

2

(
w1(x

2
0, y

2
0) + w1(a

2, b2)− 4(1 + λ)ab
)

=
ab

2

(
3 + λ

2
x20 +

1 + 3λ

2
y20 +

3 + λ

2
a2 +

1 + 3λ

2
b2 − 4(1 + λ)ab

)
=
ab

2x20

(
3 + λ

2
x40 +

(
3 + λ

2
a2 +

1 + 3λ

2
b2 − 4(1 + λ)ab

)
x20 +

1 + 3λ

2
a2b2

)
.
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In particular, for a = b, as x→ x0 and y → y0 with x0y0 = a2,

ρ(x, y; a, a)→ a2

2x20

(
3 + λ

2
x40 − 2(1 + λ)a2x20 +

1 + 3λ

2
a4
)

=
a2

2x20

(
x20 − a2

)(3 + λ

2
x20 −

1 + 3λ

2
a2
)
.

The latter is negative if

either a < x0 <

√
1 + 3λ

3 + λ
a for λ > 1 or

√
1 + 3λ

3 + λ
a < x0 < a for λ < 1.

It can be directly translated to the statements for ρ11 and ∂λρ11.

In the rest of this part, we discuss a number of properties of the critical potentials.
It follows from Definition 4.4 and Theorem 4.1 that

Proposition 4.9. The potentials V0, Vc and V c have the following expressions

V0 := V0(L1, L2, R1, R2) =− kT

e

ρ00(L1, L2, R1, R2)

ρ01(L1, L2, R1, R2)
,

Vc := Vc(L1, L2, R1, R2;λ) =− kT

e

ρ10(L1, L2, R1, R2;λ)

ρ11(L1, L2, R1, R2;λ)
,

V c := V c(L1, L2, R1, R2;λ) =− kT

e

ρ10,λ(L1, L2, R1, R2;λ)

ρ11,λ(L1, L2, R1, R2;λ)
.

Remark 4.10. The critical potentials V0, Vc and V c are independent of the cross-
section area h(x) of the channel.

When electroneutrality conditions z1L1 = −z2L2 = L and z1R1 = −z2R2 = R
hold, we write

V0(L,R) :=V0(L1, L2, R1, R2),

Vc(L,R;λ) :=Vc(L1, L2, R1, R2;λ),

V c(L,R;λ) :=V c(L1, L2, R1, R2;λ).

Corollary 4.11. Assume the electroneutrality boundary conditions z1L1 = −z2L2 =
L and z1R1 = −z2R2 = R. Then, we have

V0(L,R) =
kT

e

(D1 −D2)

z1D1 − z2D2
ln
R

L
,

Vc(L,R;λ) =
kT

e

λ− 1

λz1 − z2
f

(
L

R

)
− kT

e

D1 −D2

z1D1 − z2D2
g

(
L

R

)
, if L 6= R,

V c(L,R;λ) =
kT

e

1

z1
f

(
L

R

)
− kT

e

D1 −D2

z1D1 − z2D2
g

(
L

R

)
, if L 6= R,

where, for x > 0,

f(x) =
(x− 1) lnx

(1 + x) lnx− 2(x− 1)
, g(x) =

(1 + x)(lnx)2

(1 + x) lnx− 2(x− 1)
. (4.4)
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Proof. The formulas follow directly from Proposition 4.9 and display (4.3).

Lemma 4.12. For the functions f and g defined in (4.4), one has

(i) f(x) = −f(1/x) and g(x) = −g(1/x);

(ii) lim
x→1+

f(x) lnx = 6, lim
x→∞

f(x) = 1, and f ′(x) < 0 for x > 1;

(iii) lim
x→1+

g(x) lnx = 12, lim
x→∞

g(x)

lnx
= 1, and g(x) has a unique positive minimum in

(1,∞).

Proof. The verifications of these properties are elementary.

As a direct consequence of Corollary 4.11 and Lemma 4.12, one has

Corollary 4.13. Assume the electroneutrality boundary conditions z1L1 = −z2L2 =
L and z1R1 = −z2R2 = R. Then,

(i) V0(L,R) = −V0(R,L), Vc(L,R;λ) = −Vc(R,L;λ), V c(L,R;λ) = −V c(R,L;λ);

(ii) for L ≥ R, V0(L,R) is decreasing (resp. increasing) in L if D1 > D2 (resp.
D1 < D2), and, for fixed R > 0, lim

L→R
V0(L,R) = 0;

(iii) for fixed R > 0,

lim
L→R

Vc(L,R;λ)(lnL− lnR) =
kT

e

(
6(λ− 1)

λz1 − z2
− 12(D1 −D2)

z1D1 − z2D2

)
,

lim
L→R

V c(L,R;λ)(lnL− lnR) =
kT

e

6z1(D2 −D1) + 6(z1 − z2)D2

z1(z1D1 − z2D2)
,

lim
L→∞

Vc(L,R;λ)

lnL− lnR
= lim

L→∞

V c(L,R;λ)

lnL− lnR
= −kT

e

D1 −D2

z1D1 − z2D2
;

(4.5)

(iv) V c(L,R;λ)− Vc(L,R;λ) =
kT

e

z1 − z2
z1(λz1 − z2)

f

(
L

R

)
, and hence, for fixed R > 0,

lim
L→R

(V c(L,R;λ)− Vc(L,R;λ)) (lnL− lnR) =
kT

e

6(z1 − z2)
z1(λz1 − z2)

,

lim
L→∞

(V c(L,R;λ)− Vc(L,R;λ)) = 1.

4.1.3 Scaling laws

Next result concerns the dependences of I0, I1, V0, Vc and V c on the boundary con-
centrations. For this discussion, we include the boundary conditions in the arguments
of I0, I1, V0, Vc and V c; for example, we write I0 as I0(V ;L1, L2, R1, R2), etc..

Theorem 4.14. The following scaling laws hold,

(i) I0 scales linearly in boundary concentrations, that is, for any s > 0,

I0(V ; sL1, sL2, sR1, sR2) = sI0(V ;L1, L2, R1, R2);
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(ii) I1(V ; sL1, sL2, sR1, sR2) scales quadratically in boundary concentrations, that
is, for any s > 0,

I1(V ; sL1, sL2, sR1, sR2) = s2I1(V ;L1, L2, R1, R2);

(iii) V0, Vc and V c are invariant under scaling in boundary concentrations, that is,
for any s > 0,

V0(sL1, sL2, sR1, sR2) =V0(L1, L2, R1, R2),

Vc(sL1, sL2, sR1, sR2) =Vc(L1, L2, R1, R2),

V c(sL1, sL2, sR1, sR2) =V c(L1, L2, R1, R2).

Proof. A direct observation gives

ρ00(sL1, sL2, sR1, sR2) =sρ00(L1, L2, R1, R2),

ρ01(sL1, sL2, sR1, sR2) =sρ01(L1, L2, R1, R2),

ρ10(sL1, sL2, sR1, sR2, λ) =s2ρ10(L1, L2, R1, R2;λ),

ρ11(sL1, sL2, sR1, sR2, λ) =s2ρ11(L1, L2, R1, R2;λ).

The above scaling laws then follow from Theorem 4.1 and Proposition 4.9.

Remark 4.15. (i) Note that I0 and V0 are not linear in boundary concentrations,
and I1, Vc and V c are not quadratic in boundary concentrations.

(ii) Recall, from (4.1), that the zeroth order in ε and first order in d approximation
of the I-V relation I(V ;λ, ε, d) is I0+I1d. Since I0 and I1 scale differently in boundary
concentrations, the approximation I0 + I1d does not have a simple scaling law.

(iii) It follows from the scaling laws for I0 and I1 that, at higher ion concentra-
tions, the ion size effect becomes more significant. This is well expected. On the
other hand, our scaling law results reveal a concrete way on how the ion size effect is
manifested as the concentrations increase.

4.2 The flow rate T of matter

In this part, we briefly discuss ion size effects on the rate T . Recall from (2.4) that
The flow rate T of matter is

T (V ;λ, ε, d) = J1 + J2 = D1J1 +D2J2.

We have the following observation. Note that J1 and J2 are independent of D1 and
D2. We will indicate the dependence of T and I on D1 and D2 explicitly and omit
their dependences on other variables; that is, we denote the current I(V ;λ, ε, d) in
Section 4.1 by I(D1, D2), and T (V ;λ, ε, d) by T (D1, D2). Then,

T (D1, D2) = D1J1 +D2J2 = z1
D1

z1
J1 + z2

D2

z2
J2 = I

(
D1

z1
,
D2

z2

)
. (4.6)

Therefore, all results in Section 4.1 on the current I can be translated to results on
T by replacing D1 and D2 in Section 4.1 with D1/z1 and D2/z2, respectively. We
will thus collect the results related to T only.

Similar to the expression for I in Section 4.1, we express T as

T (V ;λ, ε, d) = T0(V ; ε) + T1(V ;λ, ε)d+ o(d). (4.7)
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Theorem 4.16. In the expression (4.7), one has

T0(V ; 0) =D1J10 +D2J20 = σ00(L1, L2, R1, R2) + σ01(L1, L2, R1, R2)
e

kT
V,

T1(V ;λ, 0) =D1J11 +D2J21 = σ10(L1, L2, R1, R2;λ) + σ11(L1, L2, R1, R2;λ)
e

kT
V,

where

σ00 =
(z2D1 − z1D2)(c

L
10 − cR10)

z2H(1)
+
z1(D1 −D2)(c

L
10 − cR10)

H(1)(ln cL10 − ln cR10)
(ln(L1R2)− ln(L2R1)),

σ01 =
z1(D1 −D2)(c

L
10 − cR10)

H(1)(ln cL10 − ln cR10)
,

σ10 =
z2D1 − z1D2

z2H(1)

[
cL10w(L1, L2)− cR10w(R1, R2) +

λz1 − z2
z2

(
(cL10)

2 − (cR10)
2
)]

− z1(D1 −D2)

H(1)

[
1− λ
z2

(cL10 − cR10)2

ln cL10 − ln cR10
− cL10 − cR10

ln cL10 − ln cR10
(φL1 − φR1 )

]
+

z1(D1 −D2)

(z1 − z2)H(1)

cL10w(L1, L2)− cR10w(R1, R2)

ln cL10 − ln cR10
(ln(L1R2)− ln(L2R1))

+
z1(λz1 − z2)(D1 −D2)

(z1 − z2)z2H(1)

(cL10)
2 − (cR10)

2

ln cL10 − ln cR10
(ln(L1R2)− ln(L2R1))

− z1(D1 −D2)

(z1 − z2)H(1)

(cL10 − cR10)(w(L1, L2)− w(R1, R2))

(ln cL10 − ln cR10)
2

(ln(L1R2)− ln(L2R1)),

σ11 =
z1(D1 −D2)

H(1)

cL10w(L1, L2)− cR10w(R1, R2)

ln cL10 − ln cR10

+
z1(λz1 − z2)(D1 −D2)

z2H(1)

(cL10)
2 − (cR10)

2

ln cL10 − ln cR10

− z1(D1 −D2)

H(1)

(cL10 − cR10)(w(L1, L2)− w(R1, R2))

(ln cL10 − ln cR10)
2

.

Definition 4.17. Define three potentials V̂0, V̂c and V̂ c by

T0(V̂0; 0) = 0, T1(V̂c;λ, 0) = 0,
d

dλ
T1(V̂

c;λ, 0) = 0.

It follows from the definition that

Proposition 4.18. The potentials V̂0, V̂c and V̂ c have the following expressions

V̂0 =− kT

e

σ00(L1, L2, R1, R2)

σ01(L1, L2, R1, R2)
,

V̂c =− kT

e

σ10(L1, L2, R1, R2;λ)

σ11(L1, L2, R1, R2;λ)
,

V̂ c =− kT

e

σ10,λ(L1, L2, R1, R2;λ)

σ11,λ(L1, L2, R1, R2;λ)
.
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We have the following scaling laws:

Theorem 4.19. For any s > 0,

σ00(sL1, sL2, sR1, sR2) =sσ00(L1, L2, R1, R2),

σ01(sL1, sL2, sR1, sR2) =sσ01(L1, L2, R1, R2),

σ10(sL1, sL2, sR1, sR2, λ) =s2σ10(L1, L2, R1, R2;λ),

σ11(sL1, sL2, sR1, sR2, λ) =s2σ11(L1, L2, R1, R2;λ).

As a consequence, T0(V ; 0) scales linearly in boundary concentrations and T1(V ;λ, 0)
scales quadratically in boundary concentrations, and the values V̂0, V̂c and V̂ c are
invariant under scaling in boundary concentrations.

Theorem 4.20. Suppose ∂V T1(V ;λ, 0) > 0 (resp. ∂V T1(V ;λ, 0) < 0).
If V > V̂c (resp. V < V̂c), then, for small ε > 0 and d > 0, the ion sizes enhance

T ; that is, T (V ; ε, d) > T (V ; ε, 0);
If V < V̂c (resp. V > V̂c), then, for small ε > 0 and d > 0, the ion sizes reduce

T ; that is, T (V ; ε, d) < T (V ; ε, 0).

Theorem 4.21. Suppose ∂2V λT1(V ;λ, 0) > 0 (resp. ∂2V λT1(V ;λ, 0) < 0).

If V > V̂ c (resp. V < V̂ c), then, for small ε > 0 and d > 0, the larger the
negatively charged ion the larger T ; that is, T increases λ;

If V < V̂ c (resp. V > V̂ c), then, for small ε > 0 and d > 0, the smaller the
negatively charged ion the larger T ; that is, T decreases λ.

Corollary 4.22. Assume the electroneutrality conditions z1L1 = −z2L2 = L and
z1R1 = −z2R2 = R, and L 6= R. Then

T0(V ; 0) =
(z2D1 − z1D2)(L−R)

z1z2H(1)
+

(D1 −D2)(L−R)

H(1)(lnL− lnR)

e

kT
V,

T1(V ;λ, 0) =
(λz1 − z2)(z2D2 − z1D1)(L

2 −R2)

z21z
2
2H(1)

− (1− λ)(D1 −D2)(L−R)2

z1z2H(1)(lnL− lnR)

− (λz1 − z2)(D1 −D2)(L−R)2

z1z2H(1)(lnL− lnR)2

(
(L+R)(lnL− lnR)

L−R
− 2

)
e

kT
V.

and hence,

V̂0 =
kT

e

(z2D1 − z1D2)(lnR− lnL)

z1z2(D1 −D2)
,

V̂c =
kT

e

(λ− 1)(lnL− lnR)(L−R)

(λz1 − z2)[(lnL− lnR)(L+R)− 2(L−R)]

− kT

e

(z2D1 − z1D2)(lnL− lnR)2(L+R)

z1z2(D1 −D2)[(lnL− lnR)(L+R)− 2(L−R)]
,

V̂ c =
kT

e

(lnL− lnR)(L−R)

z1[(lnL− lnR)(L+R)− 2(L−R)]

− kT

e

(z2D1 − z1D2)(lnL− lnR)2(L+R)

z1z2(D1 −D2)[(lnL− lnR)(L+R)− 2(L−R)]
.
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Note also that, under electroneutrality conditions,

∂V T1(V ;λ, 0) =− e(λz1 − z2)(D1 −D2)(L−R)2

z1z2kTH(1)(lnL− lnR)2

(
(L+R)(lnL− lnR)

L−R
− 2

)
∂V λT1(V ;λ, 0) =− (D1 −D2)(L−R)2

z2H(1)(lnL− lnR)2

(
(L+R)(lnL− lnR)

L−R
− 2

)
e

kT
.

Proposition 4.23. Assume electroneutrality conditions z1L1 = −z2L2 = L and
z1R1 = −z2R2 = R, and L 6= R. If D1 > D2, then

∂V T1(V ;λ, 0) > 0 and ∂2V λT1(V ;λ, 0) > 0;

if D1 < D2, then

∂V T1(V ;λ, 0) < 0 and ∂2V λT1(V ;λ, 0) < 0.

In either case, as R→ L,

∂V T1(V ;λ, 0)→ 0 and ∂2V λT1(V ;λ, 0) = O((L−R)2).

Proof. It can be checked directly or follows from Theorem 4.7 and the relation (4.6)
between T1 and I1.

In general, ∂V T1(V ;λ, 0) and ∂2V λT1(V ;λ, 0) can be negative (resp. positive) for
D1 > D2 (resp. D1 < D2). In particular, we have

Proposition 4.24. For z1 = −z2 = 1 and for any L > 0, R∗1 > 0 and R∗2 > 0 with
R∗1R

∗
2 = L2, as (R1, R2)→ (R∗1, R

∗
2),

∂V T1(V ;λ, 0)→ (D1 −D2)L

4H(1)R∗1
(R∗1 − L) ((3 + λ)R∗1 − (1 + 3λ)L) . (4.8)

For D1 > D2 (resp. D1 < D2), the limit is negative (resp. positive) if

either L < R∗1 <
1 + 3λ

3 + λ
L for λ > 1 or

1 + 3λ

3 + λ
L < R∗1 < L for λ < 1.

As (R1, R2)→ (R∗1, R
∗
2),

∂V λT1(V ;λ, 0)→ (D1 −D2)L

4H(1)R∗1
(R∗1 − L) (R∗1 − 3L) .

For D1 > D2 (resp. D1 < D2), the limit is negative (resp. positive) if L < R∗1 < 3L.

Proof. It follows from Theorem 4.8 and the relation (4.6) between T1 and I1.
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5 Appendix: The local hard-sphere model µLHSi in (2.6)

We will derive the local hard-sphere model µLHSi in (2.6) as an approximation for a
well-known nonlocal hard sphere model used in [43]. Recall that, for one-dimensional
space case, one has ([24, 62, 63, 64, 65, 66]) the following formula for the hard-sphere
(hard-rod) potential

µHSi =
δΩ({cj})
δci

, (5.9)

where

Ω({cj}) = −
∫
n0(x; {cj})ln[1− n1(x; {cj})]dx,

nl(x, {cj}) =
n∑
j=1

∫
cj(x

′)ωjl (x− x
′)dx′, (l = 0, 1),

ωj0(x) =
δ(x− rj) + δ(x+ rj)

2
, ωjl (x) = Θ(rj − |x|),

(5.10)

where δ is the Dirac function, Θ is the Heaviside function, and rj = dj/2 is the radius
of jth ion species.

In Lemma 4.1 of [43], it is shown that

µHSi (x) =− kT

2
ln
((

1−
∑
j

∫ x−ri+rj

x−ri−rj
cj(x

′)dx′
)(

1−
∑
j

∫ x+ri+rj

x+ri−rj
cj(x

′)dx′
))

+
kT

2

∫ x+ri

x−ri

∑
j(cj(x

′ − rj) + cj(x
′ + rj))

1−
∑

j

∫ x′+rj
x′−rj cj(x

′′)dx′′
dx′. (5.11)

For the first term

ln
((

1−
∑
j

∫ x−ri+rj

x−ri−rj
cj(x

′)dx′
)(

1−
∑
j

∫ x+ri+rj

x+ri−rj
cj(x

′)dx′
))
,

we expand cj(x
′) at x′ = x

cj(x
′) = cj(x) + c′j(x)(x′ − x) +O((x′ − x)2).

This gives∑
j

∫ x−ri+rj

x−ri−rj
cj(x

′)dx′ =
∑
j

∫ x−ri+rj

x−ri−rj

(
cj(x) + c′j(x)(x′ − x) +O((x′ − x)2)

)
dx′

=
∑
j

(
2rjcj(x)− 2rirjc

′
j(x) +O

(
2rjr

2
i +

2

3
r3j

))
=
∑
j

2rjcj(x) +O(r2),

where r = min{r1, r2}. Similarly, one has∑
j

∫ x+ri+rj

x+ri−rj
cj(x

′)dx′ =
∑
j

2rjcj(x) +O(r2).
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Therefore, the first term in µHSi (x) becomes

− kT

2
ln
((

1−
∑
j

∫ x−ri+rj

x−ri−rj
cj(x

′)dx′
)(

1−
∑
j

∫ x+ri+rj

x+ri−rj
cj(x

′)dx′
))

=− kT

2
ln
((

1−
∑
j

2rjcj(x) +O(r2)
)(

1−
∑
j

2rjcj(x) +O(r2)
))

=− kT ln
(

1−
∑
j

2rjcj(x) +O(r2)
)
.

(5.12)

For the second term

kT

2

∫ x+ri

x−ri

∑
j(cj(x

′ − rj) + cj(x
′ + rj))

1−
∑

j

∫ x′+rj
x′−rj cj(x

′′)dx′′
dx′,

we first expand the numerator of the integrand at x to get∑
j

(cj(x
′ − rj) + cj(x

′ + rj)) = 2
∑
j

(cj(x) + c′j(x)(x′ − x) +O((x− x′)2)).

Expanding the summation term in the denominator first at x′ and then at x, we have

∑
j

∫ x′+rj

x′−rj
cj(x

′′)dx′′ =
∑
j

∫ x′+rj

x′−rj

(
cj(x

′) + c′j(x
′)(x′′ − x′) +O((x′′ − x′)2)

)
dx′′,

=
∑
j

(
2rjcj(x

′) +O(r3)
)

=
∑
j

2rj
(
cj(x) + c′j(x)(x′ − x) +O((x′ − x)2) +O(r3)

)
.

Hence,

kT

2

∫ x+ri

x−ri

∑
j(cj(x

′ − rj) + cj(x
′ + rj))

1−
∑

j

∫ x′+rj
x′−rj cj(x

′′)dx′′
dx′ = kT

2ri
∑

j cj(x)

1−
∑

j 2rjcj(x)
+O(r2). (5.13)

Ignoring the higher order terms, the nonlocal hard sphere model µHSi (x) in (5.11)
with (5.12) and (5.13) gives the local hard sphere model µLHSi (x) in (2.6).
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