
ION SIZE AND VALENCE EFFECTS ON IONIC FLOWS VIA
POISSON-NERNST-PLANCK MODELS

PETER W. BATES∗, WEISHI LIU† , HONG LU‡ , AND MINGJI ZHANG§

Abstract. We study boundary value problems of a quasi-one-dimensional steady-state Poisson-
Nernst-Planck model with a local hard-sphere potential for ionic flows of two oppositely charged
ion species through an ion channel, focusing on effects of ion sizes and ion valences. The flow
properties of interest, individual fluxes and total flow rates of the mixture, depend on multiple
physical parameters such as boundary conditions (boundary concentrations and boundary potentials)
and diffusion coefficients, in addition to ion sizes and ion valences. For the relatively simple setting
and assumptions of the model in this paper, we are able to characterize, almost completely, the
distinct effects of the nonlinear interplay between these physical parameters. The boundaries of
different parameter regions are identified through a number of critical values that are explicitly
expressed in terms of the physical parameters. We believe our results will provide useful insights for
numerical and even experimental studies of ionic flows through membrane channels.
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1. Introduction The dynamics of ionic flows through ion channels via a quasi-
one-dimensional steady-state Poisson-Nernst-Planck (PNP) type system are studied.
The PNP type systems are basic primitive models for electrodiffusion, which treat
the medium as a dielectric continuum (see [6, 7, 10, 11, 13, 14, 15, 16, 17, 18, 24, 25,
26, 27, 34, 35, 38, 57], etc.). Under various reasonable conditions, the PNP system
can be derived from more fundamental models such as the Langevin-Poisson system
(see, for example, [12, 35, 47, 49, 57, 58]) or the Maxwell-Boltzmann equations (see,
for example, [2, 34, 35, 57]), and from an energy variational analysis (see [31, 32, 33,
40, 62, 64]). The classical PNP (cPNP) system contains only the ideal component of
electrochemical potential, which treats ions essentially as point-charges, and neglects
ion size effects. It has been simulated (see, e.g., [8, 10, 11, 13, 24, 30]) and analyzed
(see, e.g., [1, 3, 4, 19, 22, 37, 43, 41, 42, 51, 59, 60, 61, 63]) to a great extent. A major
weak point of the cPNP model is that the treatment of ions as point charges is only
reasonable in the extremely dilute setting. Furthermore, many extremely important
properties of ion channels, such as selectivity, rely on ion sizes critically, in particular,
for ions that have the same valence (number of charges per particle), such as sodium
Na+ and potassium K+, the main difference is their ionic sizes.

The PNP type model considered in this paper contains an additional component,
an uncharged local hard-sphere (LHS) potential, to partially account for ion size ef-
fects. Physically, this means that each ion is approximated as a hard-sphere with its
charges at the center of the sphere. Both local and nonlocal models for hard-sphere
potentials were introduced for this purpose. Nonlocal models give the hard-sphere po-
tentials as functionals of ion concentrations while local models depend pointwise on ion
concentrations. An early local model for hard-sphere potentials was proposed by Bik-
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2 Ion size and valence effects via PNP systems

erman ([5]), which is simple but unfortunately not ion specific (i.e., the hard-sphere
potential is the same for different ion species). The Boubĺık-Mansoori-Carnahan-
Starling-Leland local model is ion specific and has been shown to be accurate ([55, 56],
etc.). Clearly, local models have the advantage of simplicity relative to nonlocal ones.
The PNP type models with ion sizes have been investigated computationally for ion
channels and have shown great success (see [23, 25, 26, 27, 29, 31, 32, 33, 38, 50, 64],
etc.). Existence and uniqueness of minimizers and saddle points of the free-energy
equilibrium formulation with ionic interaction have also been mathematically analyzed
(see, for example, [20], [40]).

As expected, ionic flows through ion channels exhibit extremely rich phenomena,
which is why ion channels are nano-scale valves for essentially all activities of living
organisms. This is the very reason that it is a great challenge to understand the
mechanisms of ion channel functions. For mathematical analysis, the challenge lies in
the fact that specific dynamics depend on complicated nonlinear interplays of multi-
ple physical parameters such as boundary conditions (boundary concentrations and
boundary potentials), diffusion coefficients, ion sizes, permanent charge distributions,
etc. There is no hope to have explicit solution formulae for such a complicated prob-
lem even with simple boundary values. The recent development in analyzing classical
PNP models ([19, 41, 42]) sheds some lights on the voltage-current relationship in
simplified settings. This development is based heavily on modern invariant manifold
theory of nonlinear dynamical systems, particularly, the geometric theory of singular
perturbations. But, most crucially, the advance reveals a special structure specific to
PNP models. An upshot of this advance is that, far beyond the existence results, it
allows a more or less explicit approximation formula for solutions from which one can
extract concrete information directly related to biological measurements.

Recently, extending the approach in [19, 42], the authors of [36] provided an
analytical treatment of a quasi-one-dimensional version of a PNP type system which
involves two oppositely charged ions with zero permanent charge and a nonlocal hard-
sphere potential. In particular, an approximation of the I-V relation was derived by
considering the ion sizes to be small parameters, which is crucial for establishing the
following results.

(i) There exists a critical potential Vc such that the current I increases (resp.
decreases) with respect to ion size if the boundary potential V satisfies V >
Vc (resp. V <Vc);

(ii) There exists another critical potential V c such that, the current I increases
(resp. decreases) in λ=d2/d1 where d1 and d2 are, respectively, the diameters
of the positively and negatively charged ions if V >V c (resp. V <V c).

In [46], among other things, the authors successfully designed an algorithm for
numerically detecting these critical potentials identified in [36] without using any
analytical formulas from [36], even for the case with nonzero permanent charge.

In [44], the authors study a quasi-one-dimensional version of a PNP type system
with a local model for the hard-sphere potential. Under electroneutrality (zero net
charge) boundary conditions, the authors showed that the local hard-sphere model
yields exactly the same results up to first order approximation (in the diameters of
the ion species) for the I-V relation and the critical potentials Vc and V c, as those
of the nonlocal hard-sphere model in [36]. On the other hand, in the absence of
electroneutrality, a rather surprising result was found; that is, effects of ion sizes
exactly opposite to those in (i) and (ii) above can occur. Their results provide a
concrete situation in which the important I-V relations can depend on boundary
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conditions sensitively. This is crucial since many biological processes are controlled
by these ionic flows, which are in turn controlled through boundary conditions. The
following scaling laws are also established:

(a) The contribution to the I-V relation from the ideal component of the electro-
chemical potential scales linearly in boundary concentrations;

(b) The contribution (up to the leading order in diameters of ion species) to the
I-V relation from the hard-sphere component of the electrochemical potential
scales quadratically in boundary concentrations;

(c) Both Vc and V c scale invariantly in boundary concentrations.

Ion size effects on the total flow rate of matter are also analyzed in [44] and two critical
potentials V̂c and V̂ c are identified that characterize distinct effects of ion sizes on the
total flow rate of matter.

In this paper, we study a quasi-one-dimensional PNP model with the same setting
as in [44]. We focus on

(I) ion size effects on individual fluxes, in particular, on the first order terms (in
diameter) of the individual fluxes;

(II) ion valence effects on individual fluxes, on the total flow rates of matter and
charges. Here we vary the valance of the positively charged ion species while
keeping its size fixed.

We take particular advantage of the work in [44] to provide a detailed explanation
of how these physical parameters interact to produce a wide spectrum of behaviors
for ionic flows. The main contribution of this paper is that we give explicit parameter
ranges for qualitatively distinct effects on ionic fluxes. We emphasize that our results,
for the relatively simple setting and assumptions of our model, are rigorous. We
believe these results will provide useful insights for numerical and even experimental
studies of ionic flows through membrane channels. It should be pointed out that the
quasi-one-dimensional PNP model and the local hard-sphere model (see (2.7) below)
adopted in [44] and in this paper are rather simple. Aside the trivial fact that they will
miss the three-dimensional features of the problem, a major weakness is the missing
of the excess electrostatic component in the excess potentials. Important phenomena
such as charge inversion and layering may not be detected by this simple model.

The rest of the paper is organized as follows. In Section 2, we describe the
quasi-one-dimensional PNP model of ion flows, a local model for hard-sphere (HS)
potentials, the formulation of the boundary value problem of the singularly perturbed
PNP-HS system, and the basic assumptions. Results from [44] are recalled, and these
will be the starting point of our study.

In Section 3, we study ion size effects on individual fluxes. Four critical potentials
Vjc and V cj , for j= 1,2, are identified. Each of these critical potentials depends on
other physical parameters, and hence, divides the space of all parameters into two
regions. The physical parameter space is thus decomposed by these critical potentials
into different regions and, over different regions, the ion size effects on individual
fluxes are different and are rigorously analyzed (Section 3.1). The relations between
the four critical potentials and those of Vc, V

c, V̂c, V̂
c identified in [44] are established;

moreover, partial orders and total orders among all critical potentials are provided
in terms of conditions on other parameters (Section 3.2). A rather striking result on
the sensitive dependence of these critical potentials on boundary concentrations for
nearly equal left and right boundary concentrations is obtained (Section 3.3).

In Section 4, ion valence effects on the ionic flows are analyzed. For simplicity,
we only present the results on the effects of ion valence z1 of the positively charge ion
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species. For individual fluxes, two critical potentials V1 and V2 and one critical value
z∗1 are identified which divide the parameter space into different regions exhibiting
different effects from ion valence z1 (Section 4.1). For the total flow rates, one critical
potential V m and two critical values zm1 and zc1 are identified which characterize
different z1 effects on the total flow rate T of matter and the total flow rate I of
charge (Section 4.2).

A concluding remark is provided in Section 5.

2. Models and critical potentials
We briefly recall the PNP model with LHS potential and some results obtained

in [44] for ion size effects on the total flow rates of charge (I-V relations) and matter.
We assume the channel to be narrow so that it can be effectively viewed as a one-

dimensional channel and normalize it as the interval [0,1] that connects the interior
and the exterior of the cell. A quasi-one-dimensional steady-state PNP model for ion
flows of n ion species is (see [45, 48]), for i= 1,2, ·· · ,n,

1

h(x)

∂

∂x

(
εr(x)ε0h(x)

∂Φ

∂x

)
=−e

( n∑
j=1

zjcj+Q(x)

)
,

∂Ji
∂x

= 0, −Ji=
1

kBT
Di(x)h(x)ci

∂µi
∂x

,

(2.1)

where e is the elementary charge, kB is the Boltzmann constant, T is the absolute
temperature; Φ is the electric potential, Q(x) is the permanent charge distributed in
the channel wall, εr(x) is the relative dielectric coefficient, ε0 is the vacuum permit-
tivity; h(x) is the area of cross-section of the channel at the point x; for the ith ion
species, ci is the concentration, zi is the valence (the number of charges per particle),
µi is the electrochemical potential, Ji is the flux density, and Di(x) is the diffusion
coefficient. The boundary conditions are, for i= 1,2, ·· · ,n,

Φ(0) =V, ci(0) =Li; Φ(1) = 0, ci(1) =Ri. (2.2)

Ion channels link macroscopic reservoirs. The boundaries are treated as the
macroscopic reservoirs in which the electroneutrality conditions

n∑
j=1

zjLj =

n∑
j=1

zjRj = 0 (2.3)

are typically maintained. On the other hand, without electroneutrality boundary
conditions, there will be boundary layers, one at each boundary. In this case, say, for
the boundary layer at the left boundary x= 0, the values ΦL and cLi ’s of the potential
and concentrations of the limiting points of the boundary layer can be determined
uniquely from the boundary condition V and Li’s alone and the electroneutrality
conditions hold for {cLi } (see [19, 42]). One can then replace the boundary condition
(V,Li) at x= 0 with (ΦL,cLi ) to perform the analysis. For simplicity, throughout this
paper, we will assume the electroneutrality boundary conditions (2.3).

For a solution of the steady-state boundary value problem (2.1)-(2.2), the flow
rate of charge through a cross-section or current I is

I=

n∑
j=1

zjJj . (2.4)
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For fixed boundary concentrations Li and Ri, Jj depends on V only and (2.4) provides
the relation between the current I and the voltage V , which is the so-called I-V
relation. The total flow rate of matter T through a cross-section is given by

T =

n∑
j=1

Jj . (2.5)

Note that ziJi represents the individual flow rate of charge through a cross-section
for the ith ion species and Ji represents the individual flow rate of matter through a
cross-section for the ith ion species.

The electrochemical potential µi(x) =µidi (x)+µexi (x) for the ith ion species con-
sists of the ideal component

µidi (x) =zieΦ(x)+kBT ln
ci(x)

c0
(2.6)

with some characteristic c0, and the excess component µexi (x). The excess chemical
potential µexi (x) accounts for the finite sizes of charges (see, e.g., [21, 52, 53, 54, 55]).

In [44], the authors considered the local hard-sphere potential with µLHSi for µexi
with two ion species (n= 2) of opposite charges (z1>0 and z2<0) and Q= 0. The
local hard sphere potential is given by

µLHSi (x) =−kBT ln

(
1−

n∑
j=1

djcj(x)

)
+kBT

di
∑n
j=1 cj(x)

1−
∑n
j=1djcj(x)

, (2.7)

where dj is the diameter of the jth ion species.

The local hard-sphere potential in (2.7), without the second term on the right-
hand side, was first proposed by Bikerman ([5]) and has been adopted by several
authors (see, e.g., [9, 28, 39]). It is not ion specific since it is the same for all ion
species. The local hard-sphere potential in (2.7) is ion specific (i.e. potentials for ion
species with the same valence but with different sizes are different) due to the second
term on the right-hand side. This is crucial for many functions of ion channels since,
for example, K+ and Na+ are different for many biological functions mainly due to
their different sizes.

The authors also assumed that εr(x) =εr and Di(x) =Di are constants.

We now recall some results obtained in [44], which are crucial for our study and
which will be frequently used. We first recall a dimensionless parameter ε defined as

ε=
1

l

√
εrε0kBT

e2c0

where l is the length of the channel that is normalized to 1 in model (2.1) and (2.2)
and c0 is a characteristic concentration. The parameter ε is typically small and is
directly related to the ratio κD/l where

κD =

√
εrε0kBT∑
j(zje)

2cj

is the Debye length; in particular, ε=κD/l when z2j = 1 and cj = c0.
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In [44], with n= 2 and under electroneutrality conditions (2.3), the authors treat
ε and d=d1 as small parameters and derive approximations for the current I and T
expanded in d with λ=d2/d:

I(V ;ε,d) =z1D1J1 +z2D2J2 = I0(V ;ε)+I1(V ;λ,ε)d+o(d),

T (V ;ε,d) =D1J1 +D2J2 =T0(V ;ε)+T1(V ;λ,ε)d+o(d),
(2.8)

where, with Jk0 =DkJk0 and Jk1 =DkJk1,k= 1,2,

I0(V ;0) =z1J10 +z2J20, T0(V ;0) =J10 +J20,
I1(V ;λ,0) =z1J11 +z2J21, T1(V ;λ,0) =J11 +J21.

Upon introducing L=z1L1 =−z2L2 and R=z1R1 =−z2R2, one has

J10 =
f0(L,R)

z1H(1)

(
e

kBT
z1V +lnL− lnR

)
,

J20 =− f0(L,R)

z2H(1)

(
e

kBT
z2V +lnL− lnR

)
;

J11 =
2(λz1−z2)f0(L,R)f1(L,R)

z1z2H(1)

(
e

kBT
V − (1−λ)(L−R)

2(λz1−z2)f1(L,R)

− L2−R2

2z1f0(L,R)f1(L,R)

)
,

J21 =− 2(λz1−z2)f0(L,R)f1(L,R)

z1z2H(1)

(
e

kBT
V − (1−λ)(L−R)

2(λz1−z2)f1(L,R)

− L2−R2

2z2f0(L,R)f1(L,R)

)
,

(2.9)

where

f0(L,R) =
L−R

lnL− lnR
, f1(L,R) =f20 (L,R)−f0(L,R)

L+R

2
,

H(1) =

∫ 1

0

h−1(s)ds.

(2.10)
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In particular,

I0(V ;0) =
(z1D1−z2D2)f0(L,R)

H(1)

(
e

kBT
V +

D1−D2

z1D1−z2D2
(lnL− lnR)

)
,

I1(V ;λ,0) =
2(z1D1−z2D2)(λz1−z2)f0(L,R)f1(L,R)

z1z2H(1)

e

kBT
V

− (z1D1−z2D2)(1−λ)(L−R)f0(L,R)

z1z2H(1)

− (D1−D2)(λz1−z2)(L2−R2)

z1z2H(1)
,

T0(V ;0) =
f0(L,R)

H(1)

(
(D1−D2)

e

kBT
V +

z2D1−z1D2

z1z2
(lnL− lnR)

)
,

T1(V ;λ,0) =
2(D1−D2)(λz1−z2)f0(L,R)f1(L,R)

z1z2H(1)

e

kBT
V

− (D1−D2)(1−λ)(L−R)f0(L,R)

z1z2H(1)

− (z2D1−z1D2)(λz1−z2)(L2−R2)

z21z
2
2H(1)

.

(2.11)

Four critical potentials Vc, V c, V̂c and V̂ c are identified by I1(Vc;λ,0) =

0, d
dλI1(V c;λ,0) = 0, T1(V̂c;λ,0) = 0, and d

dλT1(V̂ c;λ,0) = 0, respectively. They are
given by

Vc=
kBT

e

L2−R2

2f1(L,R)

( D1−D2

z1D1−z2D2
+

1−λ
λz1−z2

f0(L,R)

L+R

)
,

V c=
kBT

e

L2−R2

2f1(L,R)

( D1−D2

z1D1−z2D2
− f0(L,R)

z1(L+R)

)
,

V̂c=
kBT

e

L2−R2

2f1(L,R)

( z2D1−z1D2

z1z2(D1−D2)
+

1−λ
λz1−z2

f0(L,R)

L+R

)
,

V̂ c=
kBT

e

L2−R2

2f1(L,R)

( z2D1−z1D2

z1z2(D1−D2)
− f0(L,R)

z1(L+R)

)
.

(2.12)

We comment that, when D1 =D2, it follows from (2.11) that V̂c and V̂ c do not exist.
In this case, T1 and dT1/dλ have the same sign as that of L−R.

The roles of these four critical potentials in characterizing ion size effects on the
I-V relations and the total flow rate of matter are discussed. We have:

Theorem 2.1. ([44]) Suppose L>R. For small ε>0 and d>0,

(i) if V >Vc (resp. V <Vc), then I(V ;ε,d)>I(V ;ε,0) (resp. I(V ;ε,d)<
I(V ;ε,0));

(ii) if V >V c (resp. V <V c), then the current I is increasing (resp. decreasing)
in λ;

(iii) if V >V̂c (resp. V <V̂c), then T (V ;ε,d)>T (V ;ε,0) (resp. T (V ;ε,d)>
T (V ;ε,0));

(iv) if V >V̂ c (resp. V <V̂ c), then the flow rate of matter T increases (resp.
decreases) in λ.

To end this section, we state the following result which helps the analyses in
Sections 3 and 4, whose proof is elementary and will be omitted.
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Lemma 2.1. For L 6=R, one has f0(L,R)>0 and f1(L,R)<0, where f0(L,R) and
f1(L,R) are defined in (2.10). With R>0 being fixed,

lim
L→R

f0(L,R) =R and lim
L→R

f1(L,R)

(L−R)2
=− 1

12R
.

3. Ion size effects on ionic flows
Our interest in this section is to provide a detailed analysis of ion size effects on

individual fluxes.

3.1. Critical potentials for individual fluxes
It is clear that ion sizes do not play roles for Ji0 =DiJi0. We will focus on

Ji1 =DiJi1 (and hence, ziJi1 =ziDiJi1), the leading terms containing ion size effects.
The sign of Ji1 determines if ion sizes enhance (i.e. Ji1(V ;ε,d)>Ji1(V ;ε,0)) or

reduce (i.e. Ji1(V ;ε,d)>Ji1(V ;ε,0)) the flux of ith ion species and the sign of dJi1/dλ
determines if the flux of ith ion species is increasing or decreasing in λ. We therefore
introduce four critical potentials – zeros of these quantities– that separate the signs
of these quantities.
Definition 3.1. Let V1c, V2c, V

c
1 , and V c2 be defined, respectively, through

J11(V1c;λ,0) = 0, J21(V2c;λ,0) = 0,
d

dλ
J11(V c1 ;λ,0) = 0,

d

dλ
J21(V c2 ;λ,0) = 0.

From (2.9), a direct calculation gives
Lemma 3.2. Suppose L 6=R. Then,

V1c=
kBT

e

L2−R2

2f1(L,R)

(
1

z1
+

1−λ
λz1−z2

f0(L,R)

L+R

)
,

V2c=
kBT

e

L2−R2

2f1(L,R)

(
1

z2
+

1−λ
λz1−z2

f0(L,R)

L+R

)
,

V c1 =
kBT

e

L2−R2

2f1(L,R)

(
1

z1
− 1

z1

f0(L,R)

L+R

)
,

V c2 =
kBT

e

L2−R2

2f1(L,R)

(
1

z2
− 1

z1

f0(L,R)

L+R

)
.

Remark 3.1. Observe that V1c and V2c depend on λ, z1 and z2. For Na+Cl− and
K+Cl−, since Na+ and K+ have the same valence but different ion sizes, the values
of V1c and V2c are different due to the ion size effect. For Na+Cl− and Ca++Cl−,
since Na+ and Ca++ have essentially the same size but different valences, the values
of V1c and V2c are different due to the ion valence effect.

Note that V c1 and V c2 do not depend on λ, which is important for the result in
Theorem 3.4 below. We also comment that V c1 depends on z1 but not on z2, and V c2
depends on both z1 and z2. This asymmetric dependence on valences is due to the
asymmetric appearance of λ in (2.9).
Corollary 3.2. Suppose L 6=R. Then,

d

dλ
V1c=

d

dλ
V2c=

kBT

e

L2−R2

2f1(L,R)

z2−z1
(λz1−z2)2

.

In particular, d
dλV1c= d

dλV2c has the same sign as that of L−R.
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The significance of the four critical potentials is apparent from their definitions.
The values V1c and V2c are the potentials that balance the ion size effects on individual
fluxes, and the values V c1 and V c2 are the potentials that separate the relative size
effects on individual fluxes. The precise statements are collected in two theorems
below, the first one for V1c and V2c and the other for V c1 and V c2 . First of all, from
(2.9), we have
Lemma 3.3. Suppose L 6=R. One has, for j= 1,2, ∂V Jj1>0 and ∂2V λJj1>0, and

lim
L→R

∂V Jj1 = lim
L→R

∂2V λJj1 = 0.

The next two results follow directly from (2.9), Definition 3.1 and Lemma 3.3.
Their proofs are omitted.
Theorem 3.3. One has, for ε>0 small and d>0 small,

(i) if V <V1c (resp. V >V1c), then J1(V ;ε,d)<J1(V ;ε,0) (resp. J1(V ;ε,d)>
J1(V ;ε,0));

(ii) if V <V2c (resp. V >V2c), then J2(V ;ε,d)>J2(V ;ε,0) (resp. J2(V ;ε,d)<
J2(V ;ε,0)).

Recall, from Lemma 3.2 and Remark 3.1, that V c1 and V c2 are independent of λ.
Theorem 3.4. One has, for ε>0 small and d>0 small,

(i) if V <V c1 (resp. V >V c1 ), then J1 is decreasing (resp. increasing) in λ;
(ii) if V <V c2 (resp. V >V c2 ), then J2 is increasing (resp. decreasing) in λ.
Theorems 3.3 and 3.4, together with Theorem 2.1, provide the roles of those

critical potentials in the classification of ion sizes effects on flows of individual ion
species and the total flows of the mixture.

3.2. Relations among critical potentials
In view of the above results, to understand how boundary conditions and diffusion

coefficients interact with the ion sizes and valences to affect ionic flows, we will study
the dependence of critical potentials on these parameters. The relations among the
critical potentials discussed in this subsection will provide detailed insight for ion size
effects and have not been described previously, to the best of our knowledge.

We will discuss the roles of each of these critical potentials V1c, V2c, V
c
1 , V c2 , Vc,

V c, V̂c and V̂ c, and (partial) orders among them.
We start with a scaling law on these critical potentials, which can be easily verified

from (2.9).
Proposition 3.5. Viewing Ji0,Ji1,Vic and V ci as functions of (L,R), one has

(i) Ji0 is homogeneous of degree one in (L,R), that is, for any s>0,
Ji0(V ;sL,sR) =sJi0(V ;L,R).

(ii) Ji1 is homogeneous of degree two in (L,R), that is, for any s>0,
Ji1(V ;sL,sR) =s2Ji1(V ;L,R).

(iii) Both Vic and V ci are homogeneous of degree zero in (L,R), that is, for any
s>0, Vic(sL,sR) =Vic(L,R) and V ci (sL,sR) =V ci (L,R).

On the basis of the physical meanings of the critical potentials, it is expected that
Vc and V̂c depend on V1c and V2c, and V c and V̂ c depend on V c1 and V c2 . The explicit
relations follow from (2.12) and Lemma 3.2 and are provided in the next result.
Proposition 3.6. Suppose L 6=R. One has

Vc=
z1D1V1c−z2D2V2c

z1D1−z2D2
, V c=

z1D1V
c
1 −z2D2V

c
2

z1D1−z2D2
, (3.1)
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and, for D1 6=D2,

V̂c=
D1V1c−D2V2c

D1−D2
, V̂ c=

D1V
c
1 −D2V

c
2

D1−D2
. (3.2)

Furthermore,

V1c−V2c=V c1 −V c2 =
kBT

e

z2−z1
z1z2

L2−R2

2f1(L,R)
,

V1c−V c1 =V2c−V c2 =Vc−V c= V̂c− V̂ c

=
kBT

e

z1−z2
z1(λz1−z2)

(L−R)f0(L,R)

2f1(L,R)
,

Vc− V̂c=V c− V̂ c

=
kBT

e

(z1−z2)2D1D2

z1z2(D1−D2)(z1D1−z2D2)

L2−R2

2f1(L,R)
.

(3.3)

We comment that the above relations (3.1) and (3.2) among the critical potentials
are independent of L and R although the values of the differences in (3.3) do depend
on L and R. Furthermore, certain relations like (3.1) and (3.2) are expected for the
relevant critical potentials; on the other hand, relations in (3.3) are not immediately
intuitive and have important consequences in studies below.

Next, we examine further relations – orders or partial orders – among these critical
potentials. These relations are more sophisticated and, very importantly, reveal de-
tailed interplays between electric potentials and other system parameters: boundary
concentrations (L,R) and diffusion coefficients (D1,D2).

Proposition 3.7. One has the following partial orders among the critical potentials.

(i) If L>R, then

V1c<V
c
1 <0<V2c<V

c
2 , Vc<V

c, V̂c<V̂
c, V1c<Vc<V2c, V c1 <V

c<V c2 ;

In addition, if D1>D2, then V̂c<V1c and V̂ c<V c1 ; if D1<D2, then V2c<V̂c
and V c2 <V̂

c.
(ii) If L<R, then

V1c>V
c
1 >0>V2c>V

c
2 , Vc>V

c, V̂c>V̂
c, V1c>Vc>V2c, V c1 >V

c>V c2 ;

In addition, if D1>D2, then V̂c>V1c and V̂ c>V c1 ; if D1<D2, then V2c>V̂c
and V c2 >V̂

c.

The above partial orders rely on simple conditions on (L,R) and (D1,D2). Further
details depend on more complicated conditions between (L,R) and (D1,D2). We will
consider the sub-case where L>R and D1>D2.

Our next result follows from (2.12), Lemmas 2.1 and 3.2, and Proposition 3.7
directly. We omit the proof.

Proposition 3.8. Suppose L>R and D1>D2. One has

(a) If (λz1−z2)D2

z1D1−z2D2
< f0(L,R)

L+R < z2−λz1
z2

min
{

D2

D1−D2
, z1D1

z1D1−z2D2

}
, then

V̂c<V̂
c<V1c<Vc<V

c
1 <V

c<V2c<V
c
2 .
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(b) If (z2−λz1)z1D1

z2(z1D1−z2D2)
< f0(L,R)

L+R < (z2−λz1)D2

z2(D1−D2)
, and this holds if

z1−
√
z1(z1−z2)
z2

< D2

D1
,

then

V̂c<V̂
c<V1c<Vc<V

c
1 <V2c<V

c<V c2 .

(c) If (z2−λz1)z1D1

z2(z1D1−z2D2)
< f0(L,R)

L+R < z2−λz1
z2

min
{

−z2D2

z1D1−z2D2
, D2

D1−D2

}
, then

V̂c<V̂
c<V1c<V

c
1 <Vc<V2c<V

c<V c2 .

(d) If f0(L,R)
L+R < z2−λz1

z2
min

{
D2

D1−D2
, z1D1

z1D1−z2D2
, −z2D2

z1D1−z2D2

}
, then

V̂c<V̂
c<V1c<V

c
1 <Vc<V

c<V2c<V
c
2 .

(e) If z2−λz1
z2

max
{

D2

D1−D2
, −z2D2

z1D1−z2D2

}
< f0(L,R)

L+R <

z2−λz1
z2

min
{

z1D1

z1D1−z2D2
, (z1−z2)D1D2

(D1−D2)(z1D1−z2D2)

}
, then

V̂c<V1c<V̂
c<Vc<V

c
1 <V

c<V2c<V
c
2 .

(f) If z2−λz1
z2

max
{

D2

D1−D2
, −z2D2

z1D1−Z2D2
, z1D1

z1D1−z2D2

}
< f0(L,R)

L+R <

(z2−λz1)(z1−z2)D1D2

z2(D1−D2)(z1D1−z2D2)
, then

V̂c<V1c<V̂
c<Vc<V

c
1 <V2c<V

c<V c2 .

(g) If (z2−λz1)D2

z2(D1−D2)
< f0(L,R)

L+R <min
{

(z2−λz1)z1D1

z2(z1D1−z2D2)
, (λz1−z2)D2

z1D1−z2D2

}
, then

V̂c<V1c<V̂
c<V c1 <Vc<V

c<V2c<V
c
2 .

(h) If z2−λz1
z2

max
{

D2

D1−D2
, z1D1

z1D1−z2D2

}
< f0(L,R)

L+R < (λz1−z2)D2

z1D1−z2D2
, then

V̂c<V1c<V̂
c<V c1 <Vc<V2c<V

c<V c2 .

(i) If (z2−λz1)(z1−z2)D1D2

z2(D1−D2)(z1D1−z2D2)
< f0(L,R)

L+R < (z2−λz1)z1D1

z2(z1D1−z2D2)
, and this holds if D2

D1
<

z1
2z1−z2 , then

V̂c<V1c<Vc<V̂
c<V c1 <V

c<V2c<V
c
2 .

(j) If z2−λz1
z2

max
{

(z1−z2)D1D2

(D1−D2)(z1D1−z2D2)
, z1D1

z1D1−z2D2

}
< f0(L,R)

L+R , then

V̂c<V1c<Vc<V̂
c<V c1 <V2c<V

c<V c2 .

Remark 3.9. In Proposition 3.8, we try to provide a complete classification of the
potential regions based on the critical potentials identified in (2.12) and Definition
3.1 for the sub-cases where L>R and D1>D2. From this the distinct effects of the
nonlinearity and the interplay among the physical parameters, such as the boundary
potential, boundary concentration, ion size, ion valence and diffusion coefficients can
be characterized. Except cases (b) and (i), all the other cases consist of sub-cases, for
example, in case (a), one has the following two sub-cases:
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V region J1 J2 T =J1+J2 I=z1J1+z2J2

(−∞,V̂c) J1(d)<J1(0) J2(d)>J2(0) T (d)<T (0) I(d)<I(0)

(V̂c,V1c) J1(d)<J1(0) J2(d)>J2(0) T (d)>T (0) I(d)<I(0)

(V1c,Vc) J1(d)>J1(0) J2(d)>J2(0) T (d)>T (0) I(d)<I(0)

(Vc,V2c) J1(d)>J1(0) J2(d)>J2(0) T (d)>T (0) I(d)>I(0)

(V2c,∞) J1(d)>J1(0) J2(d)<J2(0) T (d)>T (0) I(d)>I(0)

Table 3.1. For convenience, we rewrite J1(V ;ε,d) as J1(d), and so on. Ion size effects on both
the individual fluxes and total flux over different potential regions separated by the critical potentials
are characterized. For example, over the interval (−∞,V̂c), the ion size reduces J1, enhances J2,

but reduces both the total flux of matter T and the current I; while in (V̂2c,∞), the ion size enhances
J1, reduces J2, but enhances both T and the current I.

(a1) (λz1−z2)D2

z1D1−z2D2
< f0(L,R)

L+R < (z2−λz1)D2

z2(D1−D2)
, and this holds if z1+z2

2z2
< D2

D1
<

z1−
√
z1(z1−z2)
z2

, which is only possible if z1
z2
<− 1

3 ;

(a2) (λz1−z2)D2

z1D1−z2D2
< f0(L,R)

L+R < (z2−λz1)z1D1

z2(z1D1−z2D2)
, and this holds if

z1−
√
z1(z1−z2)
z2

< D2

D1
<

− z1z2 , which is only possible if z1
z2
<− 1

3 .

To further illustrate Proposition 3.8, we consider several examples

(i) z1 =−z2 = 1
(i1) Taking the positively charged ion species as K+, the negatively

charged one as Cl−, and λ= 1.382, L= 0.005, R= 0.2, D1 = 2, and

D2 = 10. For this set-up, we have f0(L,R)
L+R = 0.2579, (z2−λz1)D2

z2(D1−D2)
=

−2.9775, (z2−λz1)z1D1

z2(z1D1−z2D2)
= 0.397, and (λz1−z2)D2

z1D1−z2D2
= 1.985. This satisfies

case (g) in Proposition 3.8 with J1 :=JNa and J2 :=JCl. Based on
Theorems 2.1, 3.3 and 3.4, one has Tables 3.1 and 3.2.

(i2) Taking the positively charged ion species as Na+, the negatively
charged one as Cl−, and λ= 1.885, L= 0.2, R= 0.02, D1 = 1, and

D2 = 10. For this set-up, we have f0(L,R)
L+R = 0.3553, (z2−λz1)z1D1

z2(z1D1−z2D2)
=

0.2623, (z2−λz1)D2

z2(D1−D2)
=−3.2056, and (λz1−z2)D2

z1D1−z2D2
= 2.6227. This satisfies

case (h) in Proposition 3.8. Similar tables can be obtained, we leave
these to the readers.

(ii) z1 = 2, z2 =−1, taking the positively charged ion species as Ca++,
the negatively charged one as Cl−, and λ= 1.382, L= 0.002, R=

0.000002, D1 = 0.1, and D2 = 10. For this set-up, we have f0(L,R)
L+R =

6.8940, (z2−λz1)(z1−z2)D1D2

z2(D1−D2)(z1D1−z2D2)
=−0.1118, and z1(z2−λz1)D1

z2(z1D1−z2D2)
= 0.0738. This

satisfies case (j) in Proposition 3.8.

3.3. Sensitivity of ion size effects near L=R. We carefully examine the
situation for L and R close to each other. It turns out, in this situation, the properties
of the critical potentials are extremely sensitive to whether L>R or L<R.
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V region J1 J2 T I

(−∞,V̂ c) J1 decreases in λ J2 increases in λ T decreases in λ I decreases in λ

(V̂ c,V c
1 ) J1 decreases in λ J2 increases in λ T increases in λ I decreases in λ

(V c
1 ,V

c) J1 increases in λ J2 increases in λ T increases in λ I decreases in λ

(V c,V c
2 ) J1 increases in λ J2 increases in λ T increases in λ I increases in λ

(V c
2 ,∞) J1 increases in λ J2 decreases in λ T increases in λ I increases in λ

Table 3.2. For convenience, we rewrite J1(V ;d,ε,λ)=J1, and so on. Relative ion size

effects (in terms of λ := d1
d2
, where d1, the diameter of the positively charged ion species, and

d2 is the diameter of the negatively charged one) on both individual fluxes and total fluxes
over different potential regions are characterized.

Proposition 3.10. One has,

lim
L→R+

V1c= lim
L→R+

V c1 = lim
L→R−

V2c= lim
L→R−

V c2 =−∞,

lim
L→R−

V1c= lim
L→R−

V c1 = lim
L→R+

V2c= lim
L→R+

V c2 = +∞.

Proof: The second factors in formulas for V1c, V2c, V
c
1 , and V c2 in Lemma 3.2 satisfy

lim
L→R

( 1

z1
+

1−λ
λz1−z2

f0(L,R)

L+R

)
=

(1+λ)z1−2z2
2z1(λz1−z2)

>0,

lim
L→R

( 1

z2
+

1−λ
λz1−z2

f0(L,R)

L+R

)
=

2λz1−(1+λ)z2
2z2(λz1−z2)

<0,

lim
L→R

( 1

z1
− 1

z1

f0(L,R)

L+R

)
=

1

2z1
>0,

lim
L→R

( 1

z2
− 1

z1

f0(L,R)

L+R

)
=

1

z2
− 1

2z1
<0.

The results then follow from Lemma 2.1.

The significance of the above result is discussed in the next remark.
Remark 3.11. Combining this result with Theorems 3.3 and 3.4, one concludes that
the effects on computed ionic flows by including the LHS potential are sensitive to
whether L>R or L<R for L and R close. More precisely, on one hand, as L→R+,
one has V1c<V <V2c for any fixed potential V , and hence, Ji(V ;ε;d)>Ji(V ;ε;0), i=
1,2 (see, (ii) and (iii) in Theorem 3.3); and on the other hand, as L→R−, exactly
the opposite occurs, that is, one has V1c>V >V2c for any fixed potential V , and
hence, Ji(V ;ε;d)<Ji(V ;ε;0), i= 1,2 (see, (i) and (iv) in Theorem 3.3). A similar
conclusion applies to results in Theorem 3.4. This sensitive dependence of ion size
effects on individual fluxes near L=R is rather striking, and perhaps could be observed
experimentally.

Similar sensitive dependence of ion size effects on total fluxes near L=R is ex-
amined below. The result depends naturally on D1 and D2 as well as λ.
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Recall that z1>0>z2 and λ>0. Set

β1 =
2λz1−(λ+1)z2
(λ+1)z1−2z2

and β2 =
2z1−z2
z1

.

Note that 0<β1<β2.
Proposition 3.12. One has,

(i) if D1/D2<β1, then

lim
L→R+

Vc= lim
L→R+

V c=∞, lim
L→R−

Vc= lim
L→R−

V c=−∞;

(ii) if β1<D1/D2<β2, then

lim
L→R+

Vc= lim
L→R−

V c=−∞, lim
L→R−

Vc= lim
L→R+

V c=∞;

(iii) if D1/D2>β2, then

lim
L→R+

Vc= lim
L→R+

V c=−∞, lim
L→R−

Vc= lim
L→R−

V c=∞.

Proof: Direct calculations give

lim
L→R+

Vc=
kBT

e
g1(y) ·(−∞), lim

L→R+
V c=

kBT

e
g2(y) ·(−∞)

and

lim
L→R−

Vc=
kBT

e
g1(y) ·∞, lim

L→R−
V c=

kBT

e
g2(y) ·∞,

where

g1(y) =
y−1

z1y−z2
+

1−λ
2(λz1−z2)

, g2(y) =
y−1

z1y−z2
− 1

2z1

with y= D1

D2
. Note that g1(y) = 0 if and only if y=yc := D1c

D2c
, and g2(y) = 0 if and only

if y=yc :=
Dc

1

Dc
2
. In addition, one has yc<y

c. Note also that

g′1(y) =
z1−z2

(z1y−z2)2
>0 and g′2(y) =

z1−z2
(z1y−z2)2

>0

for all y>0. Therefore, we have (i) g1(y)<0 and g2(y)<0 if y<yc; (ii) g1(y)>0 and
g2(y)<0 if yc<y<y

c; and (iii) g1(y)>0 and g2(y)>0 if y>yc. Our results then
follow directly.

Remark 3.13. (a) Similar to Remark 3.11, when combining Proposition 3.12 with
Theorem 2.1, one concludes sensitive dependence of ion size effects on the current I
near L=R. The precise dependence further involves the quantities D1/D2 relative
to β1 and β2; for example, if D1/D2<β1, on one hand, as L→R+, one has V <Vc
and V <V c for any fixed potential V , and hence, I(V ;ε;d)<I(V ;ε;0) (see, (i) in
Theorem 2.1) and the current I is always decreasing in λ (see, (ii) in Theorem 2.1);
on the other hand, as L→R−, exactly the opposite effect occurs. For the other cases,
the ion size effects as L→R− are always opposite to those as L→R+.
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(b) Comparing consequences from results in Proposition 3.10 and in Proposition
3.12, we note that the sensitive dependences of ion size on individual fluxes J1 and
J2 do not depend on D1 and D2 but those on the current I do depend on D1

D2
, simply

because I=z1J1 +z2J2 =z1D1J1 +z2D2J2 with z1>0>z2 (see (2.8)). Generally,
one cannot make conclusions about ion size effects on I based on those on J1 and J2;
indeed, one cannot make conclusions about ion size effects on I; but the effect on I
can go either way.

Similarly, for the critical potentials V̂ c and V̂c, the following result holds.

Proposition 3.14. One has

lim
L→R+

V̂c= lim
L→R+

V̂ c=∞, lim
L→R−

V̂c= lim
L→R−

V̂ c=−∞.

4. Ion valence effects on ionic flows

In addition to the effect of ion size, we will consider ion valence effects on ionic
flows. For simplicity, we will only examine the effects of z1 – the valence of the
positively charged ion species – on ionic flows when ion sizes are fixed (e.g. Na+ and
Ca++ have approximately the same size but different valences).

For convenience, we treat z1 as a real number (even though z1 is an integer). We
will be interested in effects of z1 on J1 (self-effect) and on J2 (cross-effect), and on
T and I. We will fix L=−z2L2 and R=−z2R2, the boundary concentrations of the
negatively charged ion species, and require the electroneutrality boundary conditions
z1L1 =−z2L2 =L and z1R1 =−z2R2 =R. Thus, as z1 varies, L1 and R1 will vary
accordingly.

4.1. Effects of ion valence z1 on individual fluxes We begin with the
effects of z1 on individual fluxes.

The effects of z1 on the zeroth order fluxes are simple and can be readily obtained
from (2.9).

Proposition 4.1. One has

(i) J10 is strictly increasing in z1 if L<R and strictly decreasing in z1 if L>R,
and J10 = 0 exactly when

V =−kBT
z1e

(lnL− lnR).

(ii) J20 is independent of z1.

Remark 4.2. The statement (ii) implies that the zeroth order flux of one ion species
is independent of the other. This is consistent with physical intuition since the zeroth
order fluxes J10 and J20 capture only the point-charge contribution of ion species and,
statistically, there is no ion-ion interaction for point-charges.

The first order terms J11 and J21 should involve interactions between the two
ion species; in particular, z1 will contribute to J21 and is expected to also have a
more complicated effect on J11 compared to that on J10 in (i) of Proposition 4.1.
Conditions for the signs of J11 and J21 have been examined in the previous section
(Theorem 3.3 and Theorem 3.4) focusing on ion size effects. The results there can be
easily transformed to conditions treating z1 as the key variable. We will thus study
the monotonicity of J11 and J21 in z1.
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Direct calculations from (2.9) give

∂J11
∂z1

=
e

kBT

2f1(L,R)

z21H(1)
(V −V1)− 2(L2−R2)

z31H(1)
,

∂J21
∂z1

=− e

kBT

2f1(L,R)

z21H(1)
(V −V2),

(4.1)

where

V1 =
kBT

e

L2−R2

2z2f1(L,R)

(
(λ−1)

f0(L,R)

L+R
−λ
)
,

V2 =
kBT

e

L2−R2

2z2f1(L,R)

(
(λ−1)

f0(L,R)

L+R
+1
)
.

(4.2)

We remark that both V1 and V2 are independent of z1. Note that, for V 6=V1,
∂J11/∂z1 = 0 has a unique root z1 =z∗1 given by

z∗1 =
kBT

e

L2−R2

f1(L,R)(V −V1)
. (4.3)

Remark 4.3. Note that, for z∗1 in (4.3) to be positive, one requires (L−R)(V −V1)<0
. In particular, as L→R, z∗1 does not exist.

We first examine some properties of V1 and V2.
Lemma 4.1. If L>R, then V1<0<V2; if L<R, then V1>0>V2; and

lim
L→R+

V1 = lim
L→R−

V2 =−∞, lim
L→R−

V1 = lim
L→R+

V2 =∞.

Proof: Note that 0<f0(L,R)<L+R. Thus,

(λ−1)
f0(L,R)

L+R
−λ<0 and (λ−1)

f0(L,R)

L+R
+1>0.

The results then follows from Lemma 2.1.
Treating z∗1 , V1, V2 as functions of (L,R), one has

Lemma 4.2. The quantities z∗1 , V1 and V2 are homogeneous of degree zero in (L,R).
We now state the results on effects of z1.

Proposition 4.4. For self-effects, one has,
(i) if V <V1, then, for L>R, J11 is decreasing in z1 for z1<z

∗
1 and is increasing

in z1 for z1>z
∗
1 .

(ii) if V =V1, then J11 is decreasing in z1 for L>R and is increasing in z1 for
L<R.

(iii) if V >V1, then, for L<R, J11 is increasing in z1 for z1<z
∗
1 and is decreasing

in z1 for z1>z
∗
1 .

For cross-effects, one has, J21 is increasing in z1 for V >V2 and is decreasing in
z1 for V <V2.

4.2. Effects of z1 on total flow rates We first study the effects of z1 on the
total flow rate of matter T in (2.8).

For the effects of z1 on T0, from (2.11) one can deduce
Lemma 4.3. If L<R, then T0 is strictly increasing in z1; if L>R, then T0 is strictly
decreasing in z1; and T0 = 0 exactly when D1 6=D2 and

V =
kBT

e

(z1D2−z2D1)(L−R)

z1z2(D1−D2)f0(L,R)
.
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For the first order term T1, a direct calculation from (2.11) gives that

∂T1
∂z1

=
e

kBT

2(D1−D2)f1(L,R)

z21H(1)
(V −V m)− 2D1(L2−R2)

z31H(1)
, (4.4)

where

V m=
kBT

e

L2−R2

2z2f1(L,R)

(D2 +λD1

D1−D2
−(λ−1)

f0(L,R)

L+R

)
. (4.5)

Note that V m is independent of z1 and, for V 6=V m, ∂T1/∂z1 = 0 has a unique root
z1 =zm1 given by

zm1 =
kBT

e

D1(L2−R2)

(D1−D2)f1(L,R)(V −V m)
. (4.6)

Remark 4.5. Note that, for zm1 in (4.6) to be positive, one requires (L−R)(V −
V m)<0.

We now examine some properties of V m and zm1 .
Lemma 4.4. Assume D1>D2. One has if L>R, then V m>0; if L<R, then V m<0;
and

lim
L→R+

V m=∞, lim
L→R−

V m=−∞.

Treating zm1 and V m as functions of (L,R), one has
Proposition 4.6. The quantities zm1 and V m are homogeneous of degree zero in
(L,R).

We now state a result on the effect of z1 on T1.
Proposition 4.7. Assume D1>D2. One has

(i) If V <V m, then, for L>R, T1 is decreasing in z1 for z1<z
m
1 and increasing

in z1 for z1>z
m
1 ;

(ii) If V =V m, then, T1 is increasing in z1 for L<R and decreasing in z1 for
L>R;

(iii) If V >V m, then, for L<R, T1 is increasing in z1 for z1<z
m
1 and decreasing

in z1 for z1>z
m
1 .

We next examine the effect of z1 on the current I. First we study the effects of
z1 on I0. It follows from (2.11) that
Lemma 4.5. I0 is strictly increasing in z1 if V >0 and strictly decreasing in z1 if
V <0, and I0 = 0 exactly when

V =−kBT
e

D1−D2

z1D1−z2D2
(lnL− lnR).

For the first order term I1, it follows from (2.11) that

∂I1
∂z1

=
2λD1f1(L,R)

z21z2H(1)

[
z21

e

kBT
V − z

2
2D2

λD1

e

kBT
V

+
z2D2(L2−R2)

2λD1f1(L,R)

(
(λ−1)

f0(L,R)

L+R
+
D2−D1

D2

)]
.
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The following results establish the existence of a unique root of ∂I1/∂z1 = 0.
Lemma 4.6. The equation ∂I1/∂z1 = 0 has a unique root z1 =zc1 given by

zc1 =

[
z22D2

λD1
− kBT

e

z2D2(L2−R2)

2λD1f1(L,R)V

(
(λ−1)

f0(L,R)

L+R
+
D2−D1

D2

)] 1
2

.

This holds if one of the following conditions is satisfied
(i) D1

D2
≥ λ+1

2 and (L−R)V >0;

(ii) D1

D2
< λ+1

2 , R<L<L∗ and V <0 for some critical L∗ determined uniquely by

(λ−1) f0(L,R)
L+R + D2−D1

D2
= 0;

(iii) D1

D2
< λ+1

2 , L>L∗ and V >0.
From Lemma 4.6, we have the following result of effect from z1 on I1.

Lemma 4.7. One has
(i) For D1

D2
≥ λ+1

2
(i1) I1 is decreasing in z1 if z1>z

c
1 and increasing in z1 if 0<z1<z

c
1 for

V <0 and L<R;
(i2) I1 is increasing in z1 if z1>z

c
1 and decreasing in z1 if 0<z1<z

c
1 for

V >0 and L>R.
(ii) For D1

D2
< λ+1

2
(ii1) I1 is decreasing in z1 if z1>z

c
1 and increasing in z1 if 0<z1<z

c
1 for

V <0 and R<L<L∗;
(ii2) I1 is increasing in z1 if z1>z

c
1 and decreasing in z1 if 0<z1<z

c
1 for

V >0 and L>L∗.
Finally, treating zc1 as a function of (L,R), one has

Proposition 4.8. zc1 is homogeneous of degree zero in (L,R).

5. Concluding remarks
Based on a quasi-one-dimensional PNP model for ionic flows through ion chan-

nels, we investigated ion size and ion valence effects on individual fluxes and on total
flow rates of matter and charge of ionic mixtures. A unique feature of this work is
its ability to provide a detailed characterization of complicated interactions among
multiple and physically crucial parameters for ionic flows. These parameters include
boundary concentrations and potentials, diffusion coefficients, ion sizes and ion va-
lences. The results, although established for simple biological settings (two types
of ion species without permanent charge in the channel) and with only uncharged
hard-sphere potentials, have demonstrated extremely rich behaviors of ionic flows
and sensitive dependence of flow properties on all these parameters. We expect more
complex phenomena for more realistic ion channel models and for general electrolyte
solutions. We believe that this work will be useful for numerical studies and stimulate
further analytical studies of ionic flows through membrane channels. It is also our
hope that this work may provide meaningful insights or a fundamental understanding
of mechanisms for controlling ionic flows.
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