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Abstract. In this work, we analyze a one-dimensional steady-state Poisson-Nernst-Planck type model
for ionic flow through a membrane channel including ionic interactions modeled from the Density Functional
Theory in a simple setting: Two oppositely charged ion species are involved with electroneutrality boundary
conditions and with zero permanent charge, and only the hard sphere component of the excess (beyond the
ideal) electrochemical potential is included. The model can be viewed as a singularly perturbed integro-
differential system with a parameter resulting from a dimensionless scaling of the problem as the singular
parameter. Our analysis is a combination of geometric singular perturbation theory and functional analysis.
The existence of a solution of the model problem for small ion sizes is established and, treating the sizes as
small parameters, we also derive an approximation of the I-V (current-voltage) relation. For this relatively
simple situation, it is found that the ion size effect on the I-V relation can go either way – enhance or reduce
the current. More precisely, there is a critical potential value Vc so that, if V > Vc, then the ion size enhances
the current; if V < Vc, it reduces the current. There is another critical potential value V c so that, if V > V c,
the current is increasing with respect to λ = r2/r1 where r1 and r2 are, respectively, the radii of the positively
and negatively charged ions; if V < V c, the current is decreasing in λ. To our knowledge, the existence of
these two critical values for the potential was not previously identified.
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1. Introduction. Cells are basic units for all living organisms. While cell membrane
protects individual cell identity, (atomic scale) ion channels – pores embedded on cell mem-
branes – that link the inside and the outside of cells provide a major role for cells to commu-
nicate with each other. Once channel opens, ions are driven by the boundary concentration of
charges and electrical potential through the channel and create macroscopic flows of charges
that carry electrical signals. This electrodiffusion process of ion species plays a central role
for physiological properties of biological units ([11, 13, 14, 17, 19, 20, 21, 22, 23, 24, 33, 34,
35, 39, 44, 45, 60, 62, 63, 71, 72, 73], etc.).

At the molecular scale, ion flows can be modeled by the Langevin-Poisson system that is
arguably the most accurate description of the physical problem (see, for example, [2, 9, 10,
15, 35, 45, 58, 61, 71, 72, 78, 83]); for continuum versions, the Maxwell-Boltzmann equations
serve as the fundamental models (see, for example, [4, 44, 45, 71, 83]). On the other hand,
it is a great challenge to examine their dynamics analytically and even computationally. The
Poisson-Nernst-Plack (PNP) type systems are simplified models but can capture key features
of the biological system. The simplest PNP type model is the classical Poisson-Nernst-Planck
(cPNP) system (see [4, 57] for a derivation and a justification from Boltzmann-Poisson system
and [78] for a derivation from Langevin-Poisson equations). The cPNP system has been
simulated to a great extent ([11, 12, 14, 16, 18, 33, 34, 35, 38, 40, 41, 45, 46, 47, 51, 59, 76]),
and has been analyzed treating it as a singularly perturbed system with a parameter resulting
from a dimensionless scaling of the problem as the singular parameter ([1, 5, 6, 27, 31, 52,
53, 56, 64, 74, 75, 79, 80, 81, 82]). In particular, the singular boundary value problem for
one-dimensional steady-state cPNP systems was well studied to understand I-V relations,
multiplicity of solutions and many other important properties of channels. In this classical
model, a “dilute” assumption is made so that, for the electrochemical potential, only the
ideal component is included, and hence, ions are treated as point-charges as such, say, Na+

(sodium) and K+ (potassium) are unfortunately indistinguishable since they differ mainly by
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their different sizes. 1

However, many important biological functions, both quantitative and qualitative ones, of
ion channels do rely on finite size of ions; this is why Na+ and K+ are so different and there
are Na+-channels and K+-channels. Therefore, the excess (beyond the ideal) electrochemical
potential for ion-to-ion interaction can be significant. One of most successful models for the
excess electrochemical potential comes from the celebrated Density Functional Theory (DFT)
([28, 29], etc.): the excess electrochemical potential can be well approximated as functional of
ion concentrations. The PNP system combined with DFT (PNP-DFT) has been investigated
computationally for ion channels and has shown great success ([32, 35, 37, 50], etc.). Article
[3] provides a critical and detailed account of some recent works on nonlinear electrokinetic
phenomena including particularly ion-to-ion interactions. The recent activity of applying
energy variational analysis EnVarA to modeling and numerics of PNP type systems for ion
channel problems brings the study to an exciting level ([25, 26, 42, 43]). But there are
essentially no analytic results on PNP-DFT to the best of our knowledge.

In this paper, we start an analysis of one-dimensional version of PNP-DFT systems in a
simple setting; more precisely, we consider the case where two oppositely charged ions (those
that make up salts Na+Cl−, K+Cl− or Ca++Cl−2 ) are involved with electroneutrality bound-
ary conditions, the permanent charge can be ignored and only the hard sphere component
of the excess electrochemical potential is included beyond the ideal potential. The model
can be viewed as a singularly perturbed system with nonlocal terms and our analysis is a
combination of geometric singular perturbation theory and functional analysis. The former
requires an extension of the geometric singular perturbation theory for cPNP systems devel-
oped in ([27, 52, 53]); the latter contains a new ingredient designed particularly for handling
the nonlocal hard-sphere potential.

We rigorously establish the existence of solutions of the PNP-DFT model for small ion
sizes and, treating the sizes as small parameters, we also derive an approximation of the I-V
relation. The upshot of the approximation result, for this simple situation, is that the ion size
effect on the I-V relation can go either way – enhance or reduce the current. More precisely,
there is a critical potential Vc (Lemma 6.4) so that, if V > Vc, then the ion size enhances the
current; if V < Vc, it reduces the current (Theorem 6.5). There is another critical potential
V c (Lemma 6.4) so that, if V > V c, the current is increasing in λ = r2/r1 where r1 and
r2 are, respectively, the radii of the positively and negatively charged ions; if V < V c, the
current is decreasing in λ (Theorem 6.6). The value V c is probably more important since its
relevance to when small ions are preferred and when large ions are preferred. We emphasis
that the understanding of the role of V c on preference between small and large ions is at
the very early stage and a better understanding requires more extensive investigations and,
definitely at stages, careful tests against experimental data.

It is the relative simplicity of the setting we take in this paper that allows us to obtain more
or less explicit information on the solutions and, in turn, to realize the existence of these two
important critical potential values Vc and V c that necessarily depend on ion sizes. Of course,
given the complexity and richness of ion channel structures, we stress that it is not expected
that the formulas for the values of Vc and V c obtained in this paper represents a general
quantitative feature. However, we do believe these two critical potentials are qualitatively
relevant for general realistic systems and being aware of the potential existence of these
critical values can be significant for experimental, computational, and analytical study of
ion channel functions. In a companion paper [55], we designed an algorithm for numerical
detection of these critical voltages without using any analytical formulas for I-V relations. We
also demonstrated the usage of this algorithm in [55] in two ways: (i) for the model problem
in this paper, we numerically computed I-V relations and, applying the algorithm, we then
computed the critical voltage values Vc and V c, and found they agree well with the analytical
values Vc and V c in Lemma 6.4; (ii) for a PNP-DFT model with a nonzero permanent charge

1Strictly speaking, the cPNP system does not completely ignore ion sizes in the sense that it involves
diffusion coefficients of each individual ions species that do depend on ion sizes.
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Q that we don’t have analytical formulas for the I-V relations and hence for the critical
voltages, we applied the algorithm and found the critical voltages Vc and V c.

We will examine more general cases particularly with the inclusion of the excess elec-
trostatic potential, with the presence of permanent charges and multiple ion species in the
future. It is our hope that a solid mathematical foundation for the study of the complicated
and multi-scaled PNP type models will provide deep insights to the real biological systems.

The rest of the paper is organized as follows. In §2, we describe the one-dimensional
version PNP-DFT model for ion flows, Rosenfeld’s model for the hard-sphere component of
the electrochemical potential, the setup of our problem, and the strategy of our analysis. In
§3, we examine an auxiliary system with an extension of the geometric singular perturbation
theory previously developed for cPNP systems. In §4, as a part of our analysis, we study
a mapping associated to the hard-sphere potential. In §5, based on the results in §3 and
§4, we formulate the original problem as a fixed point problem and establish the existence
of its solutions. §6 is devoted to a derivation of an approximation of the I-V relation and,
based on this approximation, two critical voltage values are identified and their important
properties on ion size effects are discussed. A conclusion is given in §7. The paper ends with
an Appendix where the Fréchet differentiability of a mapping defined in §3 is established.

2. Problem setup and the strategy of analysis.

2.1. A one-dimensional steady state PNP-DFT model. We start with a brief
description of a three-dimensional Poisson-Nernst-Planck type model for ion flows. As an
approximation, we consider an ion channel Ω, whose longitudinal length has been normalized
to one,

Ω = {X = (x, y, z) : 0 < x < 1, y2 + z2 < g2(x)},

where g is a smooth function. The boundary ∂Ω of Ω consists of three portions:

L = {X ∈ Ω : x = 0}, R = {X ∈ Ω : x = 1},
M = {X ∈ Ω : y2 + z2 = g2(x)}.

Here, L and R are viewed as the two ends (inside and outside of the cell) and M the wall of
the channel.

The basic electrodiffusion model of (steady-state) Poisson-Nernst-Planck type systems
for ion flow through the channel is (see, for example, [35, 37])

−∇ · (εr(X)ε0∇φ) =e
( n∑
j=1

zjcj +Q(X)
)
,

(2.1)

−Ji =
1

kT
Di(X)ci∇µi, ∇ · Ji = 0, i = 1, 2, · · · , n

where e is the elementary charge, k the Boltzmann constant, T the absolute temperature;
φ is the electric potential, Q(X) the permanent charge of the channel, εr(X) the relative
permittivity, ε0 the vacuum permittivity, n the number of distinct types of ion species; for
the ith ion species, ci is the concentration (number density), zi the valence (number of charges
per particle), µi the electrochemical potential, Ji the flux density, and Di(X) the diffusion
coefficient.

Depending on specific biological settings of ion channel problems, one may impose dif-
ferent boundary conditions. We will consider the situation that the concentration of charges
and electrical potentials on L ∪ R are constants. An argument is that the inside and the
outside of cells are macroscopic regions in which the concentration of charges and electrical
potentials remain nearly constants. The wall of the channel will be assumed to be perfectly
insulated. We thus assume the following boundary conditions

φ|L = V, ci|L = Li, φ|R = 0, ci|R = Ri,
∂φ

∂n
|M =

∂ci
∂n
|M = 0,(2.2)
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where V , Li > 0 and Ri > 0 are constants, and n is a unit normal vector to M.
A natural one-dimensional version of the steady-state PNP type model is

− 1

h(x)

d

dx

(
εr(x)ε0h(x)

dφ

dx

)
= e
( n∑
j=1

zjcj(x) +Q
)
,

(2.3)

−Ji =
1

kT
Di(x)h(x)ci(x)

dµi
dx

,
dJi
dx

= 0, i = 1, 2, · · · , n

on x ∈ (0, 1) with the boundary conditions

(2.4) φ(0) = V, φ(1) = 0, ci(0) = Li, ci(1) = Ri

where h(x) = πg2(x) is the cross-section area of the channel over the longitudinal location
x. This one-dimensional version PNP system was suggested in [59] and it differs from the
traditional one-dimensional PNP system in that it contains the cross-section area function
h(x) that captures the main geometric property of a non-uniform channel. For example, for
a conical-shaped ion channel, one can choose an appropriate function h(x) to encode this
geometry in the one-dimensional version PNP system. We point out that the inclusion of the
function h(x) in this one-dimensional version PNP system is not only physically meaningful
but also mathematically justified. In fact, for special cases, it has been rigorously reduced
from the three-dimensional PNP system (2.1) by letting, mathematically, the maximum of
the radii of the cross-sections approach zero, and the reduction is mathematically justified to
some extents in [54].

From a solution of (2.3) and (2.4), for fixed Li and Ri and for varied V , one can extract
the I-V (current-voltage) relation

I =

n∑
j=1

zjeJj .(2.5)

A goal of this paper is to establish the existence of solutions for the boundary value
problem (2.3) and (2.4) and to examine ion size effects on the I-V relations.

2.1.1. Density functional theory and one-dimensional hard-sphere potential.
The electrochemical potential µi for the ith ion species consists of the ideal component µidi (x),
the excess component µexi (x) and the concentration-independent component µ0

i (x) (e.g. a
hard-well potential): µi(x) = µ0

i (x) + µidi (x) + µexi (x) where

(2.6) µidi (x) = zieφ(x) + kT ln
ci(x)

c0

with some characteristic number density c0 which will be normalized to one in the sequal. The
cPNP system takes the ideal component µidi (x) only. This component reflects the collision
between ion particles and the water molecules. It has been accepted that the cPNP system
is a reasonable model in, for example, the dilute case under which the ions can be treated as
point charges and the ion-to-ion interaction can be ignored. As remarked in the footnote 1,
Di’s involve the ionic radii through the Einstein relation so that the classical PNP does not
completely ignore ion sizes.

The most intriguing component is the excess electrochemical potential µexi (x) to account
for the finite size effect of charges. It consists of two components: the hard-sphere component
µHSi and the electrostatic component µESi for screening effects, etc. of finite sizes of charges
([3, 28, 29, 30, 68, 69, 84, 85], etc.); that is,

µexi = µHSi + µESi .

In this paper, as a first step, we will only include the hard-sphere component µHSi .
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The hard-sphere component µHSi (x) is naturally defined as a functional of the probability
distributions, {fj(x, v)}, where fj(x, v)dxdv is the number of jth ions at the location in
(x, x + dx) with the velocity in (v, v + dv). There are different proposals for the specifics
of µHSi (x). The most successful one comes from the Density Functional Theory (DFT).
The celebrated Density Functional Theory ([28, 29], etc.) states that µHSi (x) is actually
a functional of the concentrations, {cj(x)}, where the concentration cj and the probability

distribution are related by cj(x) =

∫
fj(x, v)dv.

A practical difficulty is that an exact formula for the functional dependence of µHSi (x)
on {cj(x)} cannot be expected. A major breakthrough was made by Rosenfeld ([68, 69]). He
treated ions as charged spheres and introduced novel ideas for an approximation of µHSi (x)
based on the geometry of spheres. An outcome of Rosenfeld’s theory is an explicit approx-
imation of µHSi (x) depending non-locally on the concentrations {cj}. (See also the recent
review article [70] on hard-sphere mixtures and the references therein.) Accuracy of Rosen-
feld’s model and its further refinements has been demonstrated by a number of applications
([36, 77, 84, 85], etc.); in particular, applications to ion channel problems have been conducted
numerically in [10, 34, 35, 37], etc. and they have shown a great improvement.

Local- or pointwise-dependent models for hard sphere potentials µHSi (x) had been pro-
posed and tested for a long time; for example, µHSi (x) = − ln

(
1 −

∑
vjcj(x)

)
by Bikerman

([8]), where vj is the volume of the jth ion species (for our one-dimensional version, vj = 2rj
where rj is the radius of the ion). Other refined local-dependent models include those of
Carnahan-Starling and Boubik-Mansoori-Carnadan-Starling (see, e.g., [3, 7]).

As mentioned above, in this paper, we will only include the hard-sphere component µHSi .
We will use Rosenfeld’s nonlocal models for µHSi and assume the ion channel to be narrow
so that it can be effectively treated as one-dimensional. In this case, for two ion species
(n = 2), Rosefeld’s one-dimensional model for µHSi is exactly the same as that of Percus-
Yevick ([30, 65, 66, 67, 68, 69]) and is given by

(2.7) µHSi = kT
δΩ({cj})
δci

,

where

Ω({cj}) =−
∫
n0(x; c1, c2) ln(1− n1(x; c1, c2))dx,

nl(x; c1, c2) =

2∑
j=1

∫
cj(x

′)ωjl (x− x
′)dx′, (l = 0, 1),(2.8)

ωj0(x) =
δ(x− rj) + δ(x+ rj)

2
, ωj1(x) = Θ(rj − |x|),

where δ is the Dirac delta function, Θ the Heaviside function with Θ(x) = 0 for x < 0 and
Θ(x) = 1 for x ≥ 0, and rj the radius of the jth ion species.

Remark 2.1. In [69], Rosenfeld discussed a reduction from his three-dimensional model
of hard spheres potential to a one-dimensional version of hard spheres (hard rods) potential.
He concluded that, the one-dimensional reduced version from the three-dimensional model
recovers the one-dimensional model given in (2.7) and (2.8) but there is an extra divergent
term. Rosefeld’s three-dimensional model for hard-sphere potential has been modified to resolve
this problem so that the new models produce exactly the one-dimensional model (2.7) and (2.8)
through the reduction procedure ([84, 85]).

2.1.2. Our problem and a strategy of analysis. The main goal is to examine the
qualitative effect of ion sizes via the one-dimensional version PNP-DFT model (2.3) and (2.4).
Here we collect the basic assumptions for the situation considered in this paper.

(A1). We consider two ion species (n = 2) with z1 > 0 and z2 < 0, and assume electro-
neutrality boundary conditions: z1L1 + z2L2 = z1R1 + z2R2 = 0.
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(A2). The permanent charge is set to be zero: Q(x) = 0.
(A3). For the electrochemical potential µi, in addition to the ideal component µidi , we only

include the hard-sphere component µHSi of the excess potential µexi .
(A4). The relative permittivity and the diffusion coefficients are constants, that is, εr(x) =

εr and Di(x) = Di.
After substituting (2.6) for µidi (x) and making the dimensionless re-scaling,

φ̄ =
e

kT
φ, V̄ =

e

kT
V, ε2 =

εrε0kT

e2
, J̄i =

Ji
Di
,

we get the following one-dimensional version PNP-DFT system for two ion species with
valences α = z1 > 0 and −β = z2 < 0:

1

h(x)

d

dx

(
ε2h(x)

d

dx
φ̄
)

= −(αc1 − βc2),
dJ̄i
dx

= 0,

h(x)
dc1
dx

+ αh(x)c1
dφ̄

dx
+
h(x)c1(x)

kT

d

dx
µHS1 (x) = −J̄1,(2.9)

h(x)
dc2
dx
− βh(x)c2

dφ̄

dx
+
h(x)c2(x)

kT

d

dx
µHS2 (x) = −J̄2,

with the boundary conditions

(2.10) φ̄(0) = V̄ , ci(0) = Li; φ̄(1) = 0, ci(1) = Ri.

Due to the nonlocal dependence of µHSi on {cj} in (2.7), system (2.9) is an integro-
differential system. A description of the strategy of our analysis on the singularly perturbed
boundary value problem (2.9) and (2.10) is in place.

First of all, using the model (2.7) for µHSi of (c1, c2), we define a mapping

G : C1([0, 1],R2)→ C0([0, 1],R2) by G(c1, c2)(x) = (G1(x), G2(x)),

where

(2.11) Gi(x) =
h(x)ci(x)

kT

d

dx
µHSi (x), i = 1, 2.

Now, for arbitrary but fixed continuous functions Gi(x) for x ∈ [0, 1], we introduce an
auxiliary boundary value problem

ε2

h(x)

d

dx

(
h(x)

d

dx
φ̄
)

= −(αc1 − βc2),
dJ̄i
dx

= 0,

h(x)
dc1
dx

+ αh(x)c1
dφ̄

dx
+G1(x) = −J̄1,(2.12)

h(x)
dc2
dx
− βh(x)c2

dφ̄

dx
+G2(x) = −J̄2,

with the boundary conditions

(2.13) φ̄(0) = V̄ , ci(0) = Li; φ̄(1) = 0, ci(1) = Ri.

Our original boundary value problem (2.9) and (2.10) is thus equivalent to the auxiliary
boundary value problem (2.12) and (2.13) subject to the constraints on Gi’s given by (2.11).

To study the latter problem, we first extend the geometric singular perturbation analysis
in ([27, 52, 53]) for the classical PNP problem to this auxiliary problem (2.12) and (2.13) for
any fixed Gi’s in §3. As a result, we will get a solution

(
φ̄(x; ε), ci(x; ε), Ji(ε)

)
in terms of

Gi(x). In this way, we obtain another mapping

F : C0([0, 1],R2)→ C1([0, 1],R2) by F(G1, G2)(x) = (c1(x; ε), c2(x; ε)) .
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Finally, the original problem (2.9) and (2.10) is reduced to a fixed point problem

(G1(x), G2(x)) = (G ◦ F) (G1, G2)(x) for (G1, G2) ∈ C0([0, 1],R2).

We analyze relevant properties of the mapping G in §4 and those of the mapping F in the
Appendix. The existence of a fixed point of (G ◦ F) will be established in §5 by an application
of the Implicit Function Theorem.

In §6, we will investigate the I-V relation, particularly, the qualitative effect of ion sizes
on the I-V relation based on the analysis on F and G.

Remark 2.2. From (2.7) and (2.8), the definition of µHSi (x) for x ∈ [0, 1] requires
(c1, c2) to be defined for x ∈ [−ρ, 1 + ρ] where ρ = max{r1 + r2, 2r1, 2r2}. Hence, the domain
of the mapping G should be C1([−ρ, 1 + ρ],R2). To form the composition G ◦ F , the range
of F should also be C1([−ρ, 1 + ρ],R2). This technical issue will be handled in the actual
constructions of F and G in later sections.

3. Geometry singular perturbation theory for problem (2.12)–(2.13). In this
section, we extend the geometric singular perturbation theory for cPNP models developed in
[27, 52, 53] to the auxiliary boundary value problem (2.12)–(2.13). The general framework
is essentially the same and the main difference involves the terms Gi’s in system (2.12). We
will follow the procedure in [27] and refer the readers to the reference for details.

The first step is to rewrite the system (2.12) into a standard form for singularly perturbed
systems and reformulate the boundary value problem to a connecting problem. We thus

denote the derivative with respect to x by overdot and introduce u = ε ˙̄φ and τ = x. System
(2.12) becomes an autonomous system of first order ordinary differential equations

ε ˙̄φ =u, εu̇ = βc2 − αc1 − ε
h′(τ)

h(τ)
u,

εċ1 =−αc1u− εh−1(τ)(G1(τ) + J̄1),
(3.1)

εċ2 =βc2u− εh−1(τ)(G2(τ) + J̄2),

˙̄J1 = ˙̄J2 = 0, τ̇ = 1.

The phase space for system (3.1) is R7 with state variables (φ̄, u, c1, c2, J̄1, J̄2, τ). System
(3.1) is the so-called slow system of this singularly perturbed problem. In terms of the fast
variable ξ = x/ε, one obtains the so-called fast system

φ̄′ =u, u′ = βc2 − αc1 − ε
h′(τ)

h(τ)
u,

c′1 =−αc1u− εh−1(τ)(G1(τ) + J̄1),
(3.2)

c′2 =βc2u− εh−1(τ)(G2(τ) + J̄2),

J̄ ′1 =J̄ ′2 = 0, τ ′ = ε,

where prime denotes the derivative with respect to the independent variable ξ.
While systems (3.1) and (3.2) have exactly the same phase portrait for ε > 0, their

limiting systems at ε = 0 often provide complementary information on state variables: the
limiting fast system (3.2) at ε = 0 captures singular layer behavior of the solution and the
limiting slow system (3.1) at ε = 0 describes regular layer behavior. An orbit of the limiting
fast system (3.2) at ε = 0 is called a fast orbit and an orbit of the limiting slow system (3.1)
at ε = 0 is called a slow orbit. A singular orbit is thus a continuous and piecewise smooth
curve in R7 that is a union of finitely many slow orbits and fast orbits. The main task of
singularly perturbed problems is to lift a singular orbit to a solution for ε > 0 systems.

Now let BL and BR be the subsets of the phase space R7 defined by

BL =
{

(V̄ , u, L1, L2, J̄1, J̄2, 0) ∈ R7 : arbitrary u, J̄1, J̄2

}
,

(3.3)
BR =

{
(0, u,R1, R2, J̄1, J̄2, 1) ∈ R7 : arbitrary u, J̄1, J̄2

}
.
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It is clear that the boundary value problem (2.12)–(2.13) is equivalent to a connecting
problem, namely, finding a solution of (3.1) or (3.2) from BL to BR. The advantage of
introducing the variable τ = x is that the existence of a solution for the connecting problem
depends only on the phase portrait of (3.1) (the same as that of (3.2)); in particular, one can
apply any rescaling of the independent variables.

In what follows, we will first construct a singular orbit and then apply the geometric
singular perturbation theory to show that there is a unique solution of the connecting problem
near the singular orbit for small ε > 0.

3.1. Construction of singular orbits. The construction of a singular orbit follows
closely the line in [27, 52, 53]. Typically, such an orbit consists of singular boundary layers
and regular layers.

3.1.1. Limiting fast dynamics and boundary layers. By setting ε = 0 in (3.1), we
obtain the so-called slow manifold Z = {u = 0, αc1 = βc2}. Meanwhile, by setting ε = 0 in
(3.2), we get the limiting fast system

φ̄′ =u, u′ = βc2 − αc1,
c′1 =−αc1u, c′2 = βc2u,(3.4)

J̄ ′1 =J̄ ′2 = 0, τ ′ = 0.

Remark 3.1. Since Gi(x) should have a layer whenever cj(x)’s have, it seems not correct
that the terms Gi(x)’s do not appear in the layer system (3.4). The reason is the following.
Although the term Gi(x) is related to {cj(x)} through dµHSi /dx, it can be seen from the
formulas in Lemma 4.2 that dµHSi /dx can be expressed in terms of cj(x)’s (not the gradients
of cj(x)’s); in particular, from (2.11), Gi(x) is expected to be of order O(1) in ε (it is the
gradient of Gi(x) that would be of order O(1/ε) at layer locations of cj’s). Hence the terms
Gi(x)’s disappear in system (3.4) due to the factor ε for the terms εGi(x)’s in system (3.2).

The situation would be different if one uses local- or pointwise-dependent models for
µHSi (x) such as those mentioned in Section 2.1.1. In all these cases, if cj’s have layers at a
point x, then Gi(x) itself, which involves dcj/dx’s, would be of order O(1/ε) in ε, and hence,
the term εGi(x) would survive in layer system (3.4). We mention that our approach can be
modified to handle this situation. The observation is that, for those local-dependent models,
although Gi’s become of order O(1/ε) in ε, there are factors of like rj’s in the term εGi, and
hence, the term survived in system (3.4) would be of order O(rj)’s. We can then treat system
(3.4) as a regular perturbation to the problem with rj = 0. Without going into details, we
claim that our results could be proved in a much simpler way. We would be interesting in
looking at local-dependent models and compare the results to those of the non-local model.

The limiting fast system (3.4) has been completely analyzed in [27, 52, 53]. Here we
briefly recall the results in [27].

The slow manifold Z consists of equilibria of (3.4). A simple computation shows that the
linearized matrix of (3.4) at each point of (φ̄, 0, c1, c2, J̄1, J̄2, τ) ∈ Z has five zero eigenvalues
whose generalized eigenspace is the tangent space of the five-dimensional slow manifold Z,
and the other two eigenvalues are ±

√
α2c1 + β2c2 6= 0 whose eigenvectors are not tangent

to Z. Thus Z is normally hyperbolic. We denote the stable and unstable manifolds of Z by
W s(Z) and Wu(Z), respectively.

Let ML be the collection of orbits from BL in forward time under the flow of system
(3.4) and MR be the collection of orbits from BR in backward time under the flow of system
(3.4). Then, for a singular orbit connecting BL to BR, the boundary layer at x = 0 must lie
in NL = ML ∩W s(Z) and the boundary layer at x = 1 must lie in NR = MR ∩Wu(Z). The
following two propositions are established in [27, 52].

Proposition 3.1. System (3.4) has a complete set of first integrals as follows:

H1 = eαφ̄c1, H2 = e−βφ̄c2, H3 = c1 + c2 −
1

2
u2, H4 = J̄1, H5 = J̄2, H6 = τ.
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With the help of the integrals, one can characterize the boundary layer behavior.

Proposition 3.2. (i) The stable manifold W s(Z) intersects BL transversally at points
with

u0 =[sgn(αL1 − βL2)]

√
2
(
L1 + L2 −

α+ β

αβ
(αL1)

β
α+β (βL2)

α
α+β

)
,

and arbitrary J̄i’s, where sgn denotes the sign function.

The unstable manifold Wu(Z) intersects BR transversally at points with

u1 =[sgn(βR2 − αR1)]

√
2
(
R1 +R2 −

α+ β

αβ
(αR1)

β
α+β (βR2)

α
α+β

)
,

and arbitrary J̄i’s.

(ii) The potential boundary layer Γ0 at x = 0 are determined up to (J̄1, J̄2) as follows:
φ̄(ξ) satisfies the Hamiltonian system

φ̄′′ + αL1e
α(V̄−φ̄) − βL2e

−β(V̄−φ̄) = 0,

together with φ̄(0) = V̄ and φ̄(ξ)→ φ̄L = V̄ − 1
α+β ln βL2

αL1
as ξ →∞; and

u(ξ) = φ̄′(ξ), c1(ξ) = L1e
α(V̄−φ̄(ξ)), c2(ξ) = L2e

−β(V̄−φ̄(ξ)),

with u(0) = u0 and, as ξ →∞,

u(ξ)→ 0, c1(ξ)→ cL1 =
1

α
(αL1)

β
α+β (βL2)

α
α+β , c2(ξ)→ cL2 =

1

β
(αL1)

β
α+β (βL2)

α
α+β .

Similarly, the potential boundary layer Γ1 at x = 1 are determined in the following way:
φ̄(ξ) satisfies the Hamiltonian system

φ̄′′ + αR1e
−αφ̄ − βR2e

βφ̄ = 0,

together with φ̄(0) = 0 and φ̄(ξ)→ φ̄R = − 1
α+β ln βR2

αR1
as ξ → −∞; and

u(ξ) = φ̄′(ξ), c1(ξ) = R1e
−αφ̄(ξ), c2(ξ) = R2e

βφ̄(ξ),

with u(0) = u1 and, as ξ → −∞,

u(ξ)→ 0, c1(ξ)→ cR1 =
1

α
(αR1)

β
α+β (βR2)

α
α+β , c2(ξ)→ cR2 =

1

β
(αR1)

β
α+β (βR2)

α
α+β .

(iii) The ω-limit set of NL = ML ∩W s(Z) and the α-limit set of NR = MR ∩Wu(Z) are

ω(NL) =
{

(φ̄L, 0, cL1 , c
L
2 , J̄1, J̄2, 0) : all J̄1, J̄2

}
,

α(NR) =
{

(φ̄R, 0, cR1 , c
R
2 , J̄1, J̄2, 1) : all J̄1, J̄2

}
,

where φ̄L, φ̄R, cLj , c
R
j are given explicitly in parts (i) and (ii).

Corollary 3.3. Under the electro-neutrality conditions at both ends of the channel,
that is, αL1 = βL2 and αR1 = βR2, we have φ̄L = V̄ , cL1 = L1, c

L
2 = L2 and φ̄R = 0, cR1 =

R1, c
R
2 = R2, and hence, there is no boundary layers.
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3.1.2. Limiting slow dynamics and regular layer. Next we construct the regular
layer on Z that connects ω(NL) and α(NR). Note that, for ε = 0, system (3.1) losses most
information. To remedy this degeneracy, we follow the idea in [27, 52, 53] and make a rescaling
u = εp and βc2−αc1 = εq in system (3.1). In terms of the new variables, system (3.1) becomes

˙̄φ =p, εṗ = q − εh
′(τ)

h(τ)
p,

εq̇ =(α(α+ β)c1 + εβq)p− h−1(τ)
(
β(G2(τ) + J̄2)− α(G1(τ) + J̄1)

)
,

(3.5)
ċ1 =−αc1p− h−1(τ)(G1(τ) + J̄1),

˙̄J1 = ˙̄J2 = 0, τ̇ = 1.

It is again a singular perturbation problem. Its limiting slow system for ε = 0 is

˙̄φ =p, 0 = q,

0 =α(α+ β)c1p− h−1(τ)
(
β(G2(τ) + J̄2)− α(G1(τ) + J̄1)

)
,

(3.6)
ċ1 =−αc1p− h−1(τ)(G1(τ) + J̄1),

˙̄J1 = ˙̄J2 = 0, τ̇ = 1.

For this system, the slow manifold is

S =

{
p =

β(G2(τ) + J̄2)− α(G1(τ) + J̄1)

α(α+ β)h(τ)c1
, q = 0

}
.

The limiting slow dynamics on S is

˙̄φ =
β(G2(τ) + J̄2)− α(G1(τ) + J̄1)

α(α+ β)h(τ)c1
, ċ1 = −β(G1(τ) +G2(τ) + J̄1 + J̄2)

(α+ β)h(τ)
,

(3.7)
˙̄J1 = ˙̄J2 = 0, τ̇ = 1.

We are looking for regular layer orbits that connect ω(NL) at τ = x = 0 with α(NR)
at τ = x = 1. Note that the point (φ̄L, 0, cL1 , c

L
2 , J̄1, J̄2, 0) ∈ ω(NL) corresponds to the

point (φ̄L, cL1 , J̄1, J̄2, 0) for system (3.7). The solution of (3.7) with the initial condition
(φ̄L, cL1 , J̄1, J̄2, 0) is

τ(x) = x, c1(x) = cL1 −
β

α+ β

∫ x

0

G1(s) +G2(s)

h(s)
ds− β(J̄1 + J̄2)

α+ β

∫ x

0

1

h(s)
ds,

(3.8)

φ̄(x) = φ̄L +
1

α(α+ β)

∫ x

0

βG2(s)− αG1(s)

h(s)c1(s)
ds+

βJ̄2 − αJ̄1

α(α+ β)

∫ x

0

1

h(s)c1(s)
ds.

For the solution to land on α(NR) at τ = x = 1, we have

cR1 = cL1 −
β

α+ β

∫ 1

0

G1(s) +G2(s)

h(s)
ds− β(J̄1 + J̄2)

α+ β

∫ 1

0

1

h(s)
ds,

(3.9)

φ̄R = φ̄L +
1

α(α+ β)

∫ 1

0

βG2(s)− αG1(s)

h(s)c1(s)
ds+

βJ̄2 − αJ̄1

α(α+ β)

∫ 1

0

1

h(s)c1(s)
ds.
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It follows from (3.8), (3.9) and the relations αcL1 = βcL2 and αcR1 = βcR2 that

J̄1 =
(∫ 1

0

1

h(s)
ds
)−1(

cL1 − cR1 −
β

α+ β

∫ 1

0

G1(s) +G2(s)

h(s)
ds
)

−α
(∫ 1

0

1

h(s)c1(s)
ds
)−1(

φ̄R − φ̄L − 1

α(α+ β)

∫ 1

0

βG2(s)− αG1(s)

h(s)c1(s)
ds
)
,

(3.10)

J̄2 =
(∫ 1

0

1

h(s)
ds
)−1(

cL2 − cR2 −
α

α+ β

∫ 1

0

G1(s) +G2(s)

h(s)
ds
)

+α
(∫ 1

0

1

h(s)c1(s)
ds
)−1(

φ̄R − φ̄L − 1

α(α+ β)

∫ 1

0

βG2(s)− αG1(s)

h(s)c1(s)
ds
)
,

where

c1(x) = cL1 −
β

α+ β

∫ x

0

G1(s) +G2(s)

h(s)
ds

−
(∫ 1

0

1

h(s)
ds
)−1

∫ x

0

1

h(s)
ds
(
cL1 − cR1 −

β

α+ β

∫ 1

0

G1(s) +G2(s)

h(s)
ds
)

can be obtained from (3.8) and (3.9). Thus, we have
Proposition 3.4. The regular layer Λ is given by

φ̄(x) = φ̄L +
1

α(α+ β)

∫ x

0

βG2(s)− αG1(s)

h(s)c1(s)
ds+

βJ̄2 − αJ̄1

α(α+ β)

∫ x

0

1

h(s)c1(s)
ds,

c1(x) = cL1 −
β

α+ β

∫ x

0

G1(s) +G2(s)

h(s)
ds

−
(∫ 1

0

1

h(s)
ds
)−1

∫ x

0

1

h(s)
ds
(
cL1 − cR1 −

β

α+ β

∫ 1

0

G1(s) +G2(s)

h(s)
ds
)
,

u(x) = 0, αc1(x) = βc2(x), τ(x) = x,

where J̄1 and J̄2 are given by (3.10).
Now we have constructed a unique singular orbit on [0, 1] that connects BL to BR. It

consists of two boundary layer orbits Γ0 from the point (V̄ , u0, L1, L2, J̄1, J̄2, 0) ∈ BL to
the point (φ̄L, 0, cL1 , c

L
2 , J̄1, J̄2, 0) ∈ ω(NL) ⊂ Z and Γ1 from point (φ̄R, 0, cR1 , c

R
2 , J̄1, J̄2, 1) ∈

α(NR) ⊂ Z to the point (0, u1, R1, R2, J̄1, J̄2, 1) ∈ BR, and a regular layer Λ on Z that
connects the two foot points (φ̄L, 0, cL1 , c

L
2 , J̄1, J̄2, 0) ∈ ω(NL) and (φ̄R, 0, cR1 , c

R
2 , J̄1, J̄2, 1) ∈

α(NR) of the two boundary layers. In particular, when αL1 = βL2 and αR1 = βR2 (electro-
neutrality conditions at both ends of the channel), φ̄L = V̄ , cL1 = L1, c

L
2 = L2, φ̄

R = 0, cR1 =
R1, c

R
2 = R2. In this case, the singular orbit consists of only the regular layer Λ that connects

BL to BR.

3.2. Existence of solutions of (2.12)–(2.13) near the singular orbit. We now
establish the existence of a solution of (2.12)–(2.13) near the singular orbit constructed above;
in fact, we will prove a general result without assuming the electro-neutrality so the singular
orbit is a union of two boundary layers and one regular layer Γ0 ∪ Λ ∪ Γ1. The proof follows
the same line as that in [27, 53] and the main tool used is the Exchange Lemma (see, for
example, [48, 49, 86]) of geometric singular perturbation theory.

We note that the singular orbit Γ0 ∪ Λ ∪ Γ1 are obtained from the limiting fast system
(3.4) and the limiting slow system (3.6) for ε = 0. In particular, the formulas (3.10) provide
the zeroth order (in ε) approximations for J̄1 and J̄2. In the following, we will denote these
zeroth order approximations by J̄10 and J̄20, respectively.

Theorem 3.5. Let Γ0 ∪ Λ ∪ Γ1 be the singular orbit of the connecting problem (3.1)
associated to BL and BR in (3.3). Then, for ε > 0 small, the auxiliary boundary value
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problem (2.12)–(2.13) has a unique smooth solution near the singular orbit. Furthermore, the
solution is Fréchet differentiable with respect to Gi(x).

Proof. For ε > 0 small, choose δ > 0 small. Let

BL(δ) =
{

(V̄ , u, L1, L2, J̄1, J̄2, 0) : |u− u0| < δ, |J̄i − J̄i0| < δ
}
.

Let ML(ε) be the forward trace of BL(δ) under the flow of system (3.1) or equivalently
of system (3.2) and let MR(ε) be the backward trace of BR. To prove the existence and
uniqueness statement, it suffices to show that ML(ε) intersects MR(ε) transversally in a
neighborhood of the singular orbit Γ0 ∪ Λ ∪ Γ1.

To establish the transversal intersection of ML(ε) and MR(ε) near the singular orbit,
we apply the Exchange Lemma successively along Γ0 ∪ Λ ∪ Γ1. Note that dimBL(δ) = 3.
Since the fast flow is not tangent to BL(δ), one has dimML(ε) = 4. The transversality of
the intersection BL ∩W s(Z) along Γ0 implies the transversality of the intersection ML(0) ∩
W s(Zl). The Exchange Lemma implies that ML(ε) will first follow Γ0 toward NL ⊂ Z,
then follow the trace of NL in the vicinity of Λ toward {x = 1}, leave the vicinity of Z,
and upon exit ML(ε) is C1 O(ε)-close to Wu(NR × (1 − δ, 1)) in the vicinity of Γ1. Since
Wu(NR × (1− δ, 1)) intersects MR(ε) transversally along Γ1, we have that ML(ε) intersects
MR(ε) transversally.

For the uniqueness, we note that the transversality of the intersection ML(ε) ∩MR(ε)
implies that dim(ML(ε) ∩MR(ε)) = dimML(ε) + dimMR(ε)− 7 = 1. Thus, ML(ε) ∩MR(ε)
consists of precisely one solution near the singular orbit.

A proof of the Fréchet differentiability of the solutions with respect to Gi(x) is provided
in Appendix.

Corollary 3.6. Under the electro-neutrality conditions αL1 = βL2 and αR1 = βR2, the
(c1(x; ε), c2(x; ε))-component of the solution of the auxiliary boundary value problem (2.12)–
(2.13) has the form ci(x; ε) = ci0(x) + εciR(x), i = 1, 2, where ci0(x) denotes the zeroth order
approximation of ci(x; ε) in ε, and ciR(x) denotes the remainder. Also, denoting L = αL1 =
βL2 and R = αR1 = βR2,

αc10(x) = βc20(x) = L− αβ

α+ β

∫ x

0

G1(s) +G2(s)

h(s)
ds

−
(∫ 1

0

1

h(s)
ds
)−1

∫ x

0

1

h(s)
ds
(
L−R− αβ

α+ β

∫ 1

0

G1(s) +G2(s)

h(s)
ds
)
.

Proof. It follows from Corollary 3.3 that, under the electro-neutrality conditions αL1 =
βL2 = L and αR1 = βR2 = R, there are no boundary layers Γ0 and Γ1. The form of
(c1(x; ε), c2(x; ε)) then follows. Note that, under the electro-neutrality conditions, φ̄L =
V̄ , cL1 = L1, c

L
2 = L2, φ̄

R = 0, cR1 = R1, c
R
2 = R2. We then have the formulas for c10(x)

and c20(x) from Proposition 3.4.

4. The mapping from the hard-sphere potential µHSi . In this section, we derive
a convenient form for µHSi . As remarked in §2 (Remark 2.2), in order to define µHSi (x)
for x ∈ [0, 1], we need an extension of (c1, c2) ∈ C1([0, 1],R2) to C1([−ρ, 1 + ρ],R2) where
ρ = max{r1 + r2, 2r1, 2r2}.

It turns out, up to O(ρ), µHSi (x) is independent of a particular extension. Since we will
focus on the results up to O(ρ) in this work, we can take any extension (ĉ1, ĉ2) ∈ C1([−ρ, 1 +
ρ],R2) of (c1, c2) ∈ C1([0, 1],R2). In particular, for any small number 0 < ν < ρ, we can fix an
extension that requires (ĉ1(x), ĉ2(x)) = (L1, L2) for x ∈ [−ρ,−ν] and (ĉ1(x), ĉ2(x)) = (R1, R2)
for x ∈ [1+ν, 1+ρ], which is consistent with the physical consideration that the concentrations
in the macroscopic reservoirs are nearly constants.

In the sequel, we will abuse the notation to denote an extension (ĉ1, ĉ2) by (c1, c2).
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Lemma 4.1. For the model µHSi in (2.7) and (2.8) associated to (c1(x), c2(x)), we have,
for x ∈ [0, 1],

µHSi (x) = −kT
2

ln
((

1−
∑
j

∫ x−ri+rj

x−ri−rj
cj(x

′)dx′
)(

1−
∑
j

∫ x+ri+rj

x+ri−rj
cj(x

′)dx′
))

+
kT

2

∫ x+ri

x−ri

∑
j(cj(x

′ − rj) + cj(x
′ + rj))

1−
∑
j

∫ x′+rj
x′−rj cj(x

′′)dx′′
dx′.

Proof. We will only derive the formula for µHS1 (x). As mentioned above, we abuse the
notion (c1, c2) in the lemma and in the sequel for its extension (ĉ1, ĉ2). It follows from (2.7)
and (2.8) that

Ω(c1 + k, c2)− Ω(c1, c2) = −
∫
n0(x; c1 + k, c2) ln(1− n1(x; c1 + k, c2))dx

+

∫
n0(x; c1, c2) ln(1− n1(x; c1, c2))dx

= −
∫ (∫

k(x′)ω1
0(x− x′)dx′

)
ln(1− n1(x; c1, c2))dx

+

∫
n0(x; c1, c2)

1− n1(x; c1, c2)

∫
k(x′)ω1

1(x− x′)dx′dx+ o(‖k‖).

Note that∫
k(x′)ω1

0(x− x′)dx′ =

∫
k(x′)

δ(x− x′ − r1) + δ(x− x′ + r1)

2
dx

=
k(x− r1) + k(x+ r1)

2
,

and ∫
k(x′)ω1

1(x− x′)dx′ =

∫
k(x′)Θ(r1 − |x− x′|)dx′ =

∫ x+r1

x−r1
k(x′)dx′.

Therefore, for any a(x) and b(x),∫
a(x)

(∫
k(x′)ω1

0(x− x′)dx′
)
dx =

∫
a(x)

k(x− r1) + k(x+ r1)

2
dx

=

∫
a(x− r1) + a(x+ r1)

2
k(x)dx,

and∫
b(x)

∫
k(x′)ω1

1(x− x′)dx′dx =

∫
b(x)

∫ x+r1

x−r1
k(x′)dx′dx =

∫ ∫ x+r1

x−r1
b(x′)dx′k(x)dx.

Hence,

Ω(c1 + k, c2)− Ω(c1, c2) =− 1

2

∫
ln
(

(1− n1(x− r1))(1− n1(x+ r1))
)
k(x)dx

+

∫ ∫ x+r1

x−r1

n0(x′)

1− n1(x′)
dx′k(x)dx+ o(‖k‖);

that is,

δΩ({cj})
δc1

= −1

2
ln ((1− n1(x− r1))(1− n1(x+ r1))) +

∫ x+r1

x−r1

n0(x′)

1− n1(x′)
dx′.
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Note that

n0(x) =

2∑
j=1

∫
cj(x

′)ωj0(x− x′)dx′

=
1

2

2∑
j=1

∫
cj(x

′)(δ(x− x′ − rj) + δ(x− x′ + rj))dx
′

=
1

2

2∑
j=1

(cj(x− rj) + cj(x+ rj)),

and

n1(x) =

2∑
j=1

∫
cj(x

′)ωj1(x− x′)dx′

=

2∑
j=1

∫
cj(x

′)Θ(rj − |x− x′|)dx′ =

2∑
j=1

∫ x+rj

x−rj
cj(x

′)dx′.

The formula for µHS1 claimed in the lemma follows immediately.

Set r1 = r and r2 = λr, and denote

K1(x) =

∫ x+2r

x

c1(s)ds+

∫ x+(λ+1)r

x−(λ−1)r

c2(s)ds,

K2(x) =

∫ x

x−2r

c1(s)ds+

∫ x+(λ−1)r

x−(λ+1)r

c2(s)ds,

(4.1)

K3(x) =

∫ x+(λ+1)r

x+(λ−1)r

c1(s)ds+

∫ x+2λr

x

c2(s)ds,

K4(x) =

∫ x−(λ−1)r

x−(λ+1)r

c1(s)ds+

∫ x

x−2λr

c2(s)ds.

It is obvious that K1(x) = K2(x+ 2r) = K3(x− (λ− 1)r) = K4(x+ (λ+ 1)r).

Lemma 4.2. For the model µHSi in (2.7) and (2.8) associated to (c1(x), c2(x)) ∈ C1([0, 1],R2),
we have, for x ∈ [0, 1],

G1(x) =
h(x)c1(x)

kT

d

dx
µHS1 (x)

= h(x)c1(x)
(c1(x+ 2r) + c2(x+ (λ+ 1)r)

1−K1(x)
− c1(x− 2r) + c2(x− (λ+ 1)r)

1−K2(x)

)
,

G2(x) =
h(x)c2(x)

kT

d

dx
µHS2 (x)

= h(x)c2(x)
(c1(x+ (λ+ 1)r) + c2(x+ 2λr)

1−K3(x)
− c1(x− (λ+ 1)r) + c2(x− 2λr)

1−K4(x)

)
.

The mapping (G1, G2) = G(c1, c2) : C1([0, 1],R2)→ C0([0, 1],R2) defined above is Fréchet
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differentiable, and its Fréchet derivative is as follows:

(DG1)[d1, d2](x)

= h(x)
(c1(x+ 2r) + c2(x+ (λ+ 1)r)

1−K1(x)
− c1(x− 2r) + c2(x− (λ+ 1)r)

1−K2(x)

)
d1(x)

+h(x)c1(x)
(d1(x+ 2r)

1−K1(x)
− d1(x− 2r)

1−K2(x)

)
+
h(x)c1(x)(c1(x+ 2r) + c2(x+ (λ+ 1)r))

(1−K1(x))2

∫ x+2r

x

d1(s)ds

−h(x)c1(x)(c1(x− 2r) + c2(x− (λ+ 1)r))

(1−K2(x))2

∫ x

x−2r

d1(s)ds

+h(x)c1(x)
(d2(x+ (λ+ 1)r)

1−K1(x)
− d2(x− (λ+ 1)r)

1−K2(x)

)
+
h(x)c1(x)(c1(x+ 2r) + c2(x+ (λ+ 1)r))

(1−K1(x))2

∫ x+(λ+1)r

x−(λ−1)r

d2(s)ds

−h(x)c1(x)(c1(x− 2r) + c2(x− (λ+ 1)r))

(1−K2(x))2

∫ x+(λ−1)r

x−(λ+1)r

d2(s)ds,

(DG2)[d1, d2](x)

= h(x)c2(x)
(d1(x+ (λ+ 1)r)

1−K3(x)
− d1(x− (λ+ 1)r)

1−K4(x)

)
+
h(x)c2(x)(c1(x+ (λ+ 1)r) + c2(x+ 2λr)

(1−K3(x))2

∫ x+(λ+1)r

x+(λ−1)r

d1(s)ds

−h(x)c2(x)(c1(x− (λ+ 1)r) + c2(x− 2λr))

(1−K4(x))2

∫ x+(λ−1)r

x−(λ+1)r

d1(s)ds

+h(x)
(c1(x+ (λ+ 1)r) + c2(x+ 2λr)

1−K3(x)
− c1(x− (λ+ 1)r) + c2(x− 2λr)

1−K4(x)

)
d2(x)

+
h(x)c2(x)(c1(x+ (λ+ 1)r) + c2(x+ 2λr))

(1−K3(x))2

∫ x+2λr

x

d2(s)ds

−h(x)c2(x)(c1(x− (λ+ 1)r) + c2(x− 2λr))

(1−K4(x))2

∫ x

x−2λr

d2(s)ds

+h(x)c2(x)
(d2(x+ 2λr)

1−K3(x)
− d2(x− 2λr)

1−K4(x)

)
,

where Ki(x) (i = 1, · · · , 4) are given in (4.1). Moreover, ‖DG‖ = O(r) as r → 0.
Proof. The formula for G as well as its Fréchet derivative follow directly from a compu-

tation using the expression µHSi in Lemma 4.1.

5. A fixed point problem and its solution. We are ready to give a precise setup of
a fixed point problem whose solution is the solution of (2.9)–(2.10).

For any (G1, G2) ∈ C0([0, 1],R2), let (φ̄, c1, c2) be the solution of the auxiliary problem
(2.12)–(2.13). Define F : C0([0, 1],R2)→ C1([−ρ, 1 + ρ],R2) via

(c1, c2) = F(G1, G2).(5.1)

Recall that (c1, c2) in (5.1) is actually its extension (ĉ1, ĉ2) to x ∈ [−ρ, 1 + ρ].
The mapping G : C1([−ρ, 1 + ρ],R2)→ C0([0, 1],R2) is defined in Lemma 4.2

(G1, G2) = G(c1, c2).(5.2)
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Let J = G ◦ F : C0([0, 1],R2)→ C0([0, 1],R2). The fixed point problem is then

(G1, G2) = J (G1, G2), (G1, G2) ∈ C0([0, 1],R2).(5.3)

Theorem 5.1. Under the electro-neutrality conditions αL1 = βL2 and αR1 = βR2, if
the parameter ε, the radii r1 and r2 are small enough, then the boundary value problem (2.9)
and (2.10) has a unique solution.

Proof. It suffices to show, under the condition in the theorem, that the fixed point problem
(5.3) has a unique solution. The latter is equivalent to

H(G1, G2)(x) : = (G1(x), G2(x))− J (G1, G2)(x) = 0.(5.4)

Note that J (G1, G2) =
(
G ◦ F

)
(G1, G2) depends on r and ε implicitly. The Fréchet

derivative DG of G is of order O(r) as r → 0 and that DF of F is uniformly bounded in ε
for small ε > 0 (Theorem 3.5 and Lemma 4.2). We thus conclude, for ε > 0 small and as
r → 0, the Fréchet derivative DH of H is of order O(r) close to the identity. The Implicit
Function Theorem implies that, for ε > 0 small and r > 0 small, the equation (5.4) has a
unique solution (G1, G2).

6. Ion size effect on I-V relations. The analysis in the previous sections not only
establishes the existence of a unique solution for boundary value problem (2.9) and (2.10)
but also provides quantitative information on the solution that allows us to extract a useful
approximation to the I-V relation for small r. A number of nontrivial consequences can be
drawn from the approximated I-V relation.

We will drive an approximation of the I-V relation (2.5) in r for the case where n = 2
and h(x) = 1 under the electro-neutrality conditions αL1 = βL2 = L and αR1 = βR2 = R.
For ε > 0 small, let

I(V ; ε, r) = I0(V ; ε) + I1(V ; ε)r + o(r).(6.1)

We will be interested in I0(V ; ε) and I1(V ; ε) in the expansion (6.1).

Theorem 6.1. Under the electro-neutrality conditions αL1 = βL2 = L and αR1 =
βR2 = R, we have

I0(V ; 0) = e(D1 −D2)(L−R) +
e2(αD1 + βD2)(L−R)

kT (lnL− lnR)
V,

I1(V ; 0) =
2e(D1 −D2)(αλ+ β)(L2 −R2)

αβ
− 2e(αD1 + βD2)(λ− 1)(L−R)2

αβ(lnL− lnR)

+
2e2(αD1 + βD2)(αλ+ β)[(L2 −R2)(lnL− lnR)− 2(L−R)2]V

αβkT (lnL− lnR)2
.

Proof. Note that, for ε = 0, I(V ; 0, r) = αeJ10 − βeJ20 = αeD1J̄10 − βeD2J̄20 (see
(2.5)) where J̄10 and J̄20 are the zeroth order (in ε) approximation of J̄1 and J̄2 given in
(3.10). Using the electro-neutrality conditions αL1 = βL2 = L and αR1 = βR2 = R, and its
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consequences φ̄L = V̄ = e
kT V, c

L
i = Li, φ̄

R = 0, cRi = Ri, we have

I(V ; 0, r) = αeD1J̄10 − βeD2J̄20

= αeD1

(
L1 −R1 −

∫ 1

0

β(G10(s) +G20(s))

α+ β
ds
)

− α2eD1∫ 1

0
1

c10(s)ds

(
− V̄ −

∫ 1

0

βG20(s)− αG10(s)

α(α+ β)c10(s)
ds
)

−βeD2

(
L2 −R2 −

∫ 1

0

α(G10(s) +G20(s))

α+ β
ds

)
(6.2)

− αβeD2∫ 1

0
1

c10(s)ds

(
− V̄ −

∫ 1

0

βG20(s)− αG10(s)

α(α+ β)c10(s)
ds
)

= e(D1 −D2)
(
L−R−

∫ 1

0

αβ(G10(s) +G20(s))

α+ β
ds
)

+
αe2(αD1 + βD2)

kT
∫ 1

0
1

c10(s)ds
V +

αeD1 + βeD2∫ 1

0
1

c10(s)ds

∫ 1

0

βG20(s)− αG10(s)

(α+ β)c10(s)
ds,

where the subscript i0 refers to the zeroth order approximation quantities of system (2.9)–
(2.10) in ε; in particular, from Corollary 3.6 and Lemma 4.2,

G10(x) = c10(x)
c10(x+ 2r) + c20(x+ (λ+ 1)r)

1−
∫ x+2r

x
c10(s)ds−

∫ x+(λ+1)r

x−(λ−1)r
c20(s)ds

−c10(x)
c10(x− 2r) + c20(x− (λ+ 1)r)

1−
∫ x
x−2r

c10(s)ds−
∫ x+(λ−1)r

x−(λ+1)r
c20(s)ds

,

(6.3)

G20(x) = c20(x)
c10(x+ (λ+ 1)r) + c20(x+ 2λr)

1−
∫ x+(λ+1)r

x+(λ−1)r
c10(s)ds−

∫ x+2λr

x
c20(s)ds

−c20(x)
c10(x− (λ+ 1)r) + c20(x− 2λr)

1−
∫ x−(λ−1)r

x−(λ+1)r
c10(s)ds−

∫ x
x−2λr

c20(s)ds
,

and

αc10(x) = βc20(x) = L− αβ

α+ β

∫ x

0

(G10(s) +G20(s))ds

(6.4)

−
(
L−R− αβ

α+ β

∫ 1

0

(G10(s) +G20(s))ds
)
x.

To simplify the expressions of (G10(x), G20(x)) and (c10(x), c20(x)), we first write

αc10(x) = βc20(x) = A0(x) +A1(x)r + o(r)(6.5)

for some functions A0(x) and A1(x) to be determined later on. Then we expand G10 and G20

in r from (6.3) to get

G10(x) = 2c10(x) (2c′10(x) + (λ+ 1)c′20(x)) r + o(r)

=
2(α(λ+ 1) + 2β)

α2β
A0(x)A′0(x)r + o(r),

(6.6)
G20(x) = 2c20(x) ((λ+ 1)c′10(x) + 2λc′20(x)) r + o(r)

=
2(2αλ+ β(λ+ 1))

αβ2
A0(x)A′0(x)r + o(r).
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Substitute (6.6) into (6.4) and use (6.5) to get

A0(x) = L− (L−R)x, A1(x) =
2(αλ+ β)(L−R)2

αβ
x(1− x).

Thus,

αc10(x) = βc20(x) = L− (L−R)x+
2(αλ+ β)(L−R)2

αβ
x(1− x)r + o(r),

G10(x) = −2(α(λ+ 1) + 2β)(L−R)

α2β
[L− (L−R)x]r + o(r),(6.7)

G20(x) = −2(2αλ+ β(λ+ 1))(L−R)

αβ2
[L− (L−R)x]r + o(r).

It follows from (6.7) that∫ 1

0

1

c10(x)
dx =

∫ 1

0

α

L− (L−R)x+ 2(αλ+β)(L−R)2

αβ x(1− x)r + o(r)
dx

=
α(lnL− lnR)

L−R
+

2(αλ+ β)

β

(
2− (L+R)

lnL− lnR

L−R

)
r + o(r),

and hence,

1∫ 1

0
1

c10(x)dx
=

1
α(lnL−lnR)

L−R + 2(αλ+β)
β

(
2− (L+R) lnL−lnR

L−R

)
r + o(r)

(6.8)

=
L−R

α(lnL− lnR)
−

2(αλ+ β)
(
2(L−R)2 − (L2 −R2)(lnL− lnR)

)
α2β(lnL− lnR)2

r + o(r).

Also, from (6.7), we have∫ 1

0

(G10(s) +G20(s))ds = −2(α+ β)(αλ+ β)(L2 −R2)

α2β2kT
r + o(r),(6.9)

and ∫ 1

0

βG20(s)− αG10(s)

c10(s)
ds =

(
2α(λ− 1)

∫ 1

0

(c′10(x) + c′20(x))dx
)
r + o(r)

(6.10)

= −2(α+ β)(λ− 1)(L−R)

β
r + o(r).

Finally, by (6.2), (6.8), (6.9) and (6.10), we have

I(V ; 0, r) = e(D1 −D2)(L−R) +
e2(αD1 + βD2)(L−R)

kT (lnL− lnR)
V

+
2e(D1 −D2)(αλ+ β)(L2 −R2)

αβ
r

+
2e2(αD1 + βD2)(αλ+ β)[(L2 −R2)(lnL− lnR)− 2(L−R)2]V

αβkT (lnL− lnR)2
r

−2e(αD1 + βD2)(λ− 1)(L−R)2

αβ(lnL− lnR)
r + o(r).

The claimed formulas for I0(V ; 0) and I1(V ; 0) follow directly.
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With the formulas in Theorem 6.1, we now make some crucial observations. Set

f0(L,R) =
L−R

lnL− lnR
, f1(L,R) =

(L2 −R2)(lnL− lnR)− 2(L−R)2

(lnL− lnR)2
.

Then,

I0(V ; 0) = e(D1 −D2)(L−R) +
e2(αD1 + βD2)

kT
f0(L,R)V,

I1(V ; 0) =
2e(L−R)

αβ
[(D1 −D2)(αλ+ β)(L+R)− (αD1 + βD2)(λ− 1)f0(L,R)]

+
2e2(αD1 + βD2)(αλ+ β)

αβkT
f1(L,R)V,

d

dλ
I1(V ; 0) =

2e(L−R)

αβ
(α(D1 −D2)(L+R)− (αD1 + βD2)f0(L,R))

+
2e2(αD1 + βD2)

βkT
f1(L,R)V.

Lemma 6.2. If L 6= R, then f0(L,R) > 0 and f1(L,R) > 0. As |L−R| → 0, say L→ R
with R being fixed,

f0(L,R)→ R and
f1(L,R)

(L−R)2
→ 1

6
.

Definition 6.3. Let Vc be the value so that I1(Vc; 0) = 0 and let V c be the value so that
d

dλ
I1(V c; 0) = 0.

The next lemma follows directly from the above explicit formulas.
Lemma 6.4. If L 6= R, then

Vc =
kT

e

(λ− 1)(L−R)(lnL− lnR)

(αλ+ β)((L+R)(lnL− lnR)− 2(L−R))

−kT
e

(D1 −D2)(L+R)(lnL− lnR)2

(αD1 + βD2)((L+R)(lnL− lnR)− 2(L−R))
,

V c =
kT

e

(L−R)(lnL− lnR)

α((L+R)(lnL− lnR)− 2(L−R))

−kT
e

(D1 −D2)(L+R)(lnL− lnR)2

(αD1 + βD2)((L+R)(lnL− lnR)− 2(L−R))
.

The significance of the two critical values Vc and V c is apparent from their definitions.
The value Vc is the potential that balances ion size effect and the value V c is the potential
related to the relative size effect. We now state the properties explicitly in two theorems
whose proofs follow directly from the definitions of Vc and V c and the fact that f1(L,R) > 0
for L 6= R in Lemma 6.2.

Theorem 6.5. Suppose L 6= R. If V > Vc, then, for small ε > 0 and r > 0, the ion sizes
enhance the current I; that is, I(V ; ε, r) > I(V ; ε, 0);

If V < Vc, then, for small ε > 0 and r > 0, the ion sizes reduce the current I; that is,
I(V ; ε, r) < I(V ; ε, 0).

Theorem 6.6. Suppose L 6= R. If V > V c, then, for small ε > 0 and r > 0, the larger
the negatively charged ion the larger the current I; that is, the current I is increasing in λ.
If V < V c, then, for small ε > 0 and r > 0, the smaller the negatively charged ion the larger
the current I; that is, the current I is decreasing in λ.
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7. Conclusion and discussion. In this paper, we analyze a one-dimensional version of
PNP type model for ion flows through a membrane channel. In this one-dimensional PNP type
model, we add a hard sphere (hard rod) correction to the classical PNP model by including a
one-dimensional hard sphere potential. The corresponding mathematical problem becomes a
boundary value problem of an integro-differential system. We have established the existence
of solutions to the boundary value problems and, most importantly, we have identified two
critical potential values Vc and V c in Lemma 6.4 that characterize some ion size effects on
I-V relations (Theorems 6.5 and 6.6). The critical value V c is probably more important due
to its property in Theorem 6.6: it is related to a possible mechanism on when small ions are
preferred and when large ions are preferred. As we emphasized in the introduction that the
understanding of the roles of Vc and V c in this paper is at the very early stage. There are a
great deal of fundamental questions needed to be answered before one can take these values
seriously. For example, we have tried hard to stress that the specific setting of our problem
may not reflect precisely any realistic biological settings. The one-dimensional version for the
true three-dimensional problem and missing the excess electrostatic potential could result in a
serious limitation on the applicability of the critical values. However, we believe the existence
of these critical potentials are generally valid, and the awareness of the potential existence of
these critical voltages itself would be very useful for the community.

In a companion paper [55], among other things, we specifically devoted our effort to
designing an algorithm (based on a rigorous mathematical analysis in Proposition 4.6 of [55])
for numerically detecting these critical voltages without using any analytical formulas for I-V
relations. We have demonstrated the usage of this algorithm in [55] in two ways: (i) for
the model problem in this paper, we numerically computed I-V relations and, applying the
algorithm, we then computed the critical voltage values Vc and V c, and found they agree
well with the analytical values Vc and V c in Lemma 6.4; (ii) for the PNP-DFT model with
a nonzero permanent charge Q that we don’t have analytical formulas for the I-V relations
and for the critical voltages, we applied the algorithm and found the critical voltages.

We hope our work will stimulate more investigations regarding these critical potentials
and, possibly, revealing other new characteristic parameters for ion size effects.

8. Appendix. Fréchet differentiability in ODEs. Consider the connecting problem
(boundary value problem)

u′ = F (x, u,G(x)), x ∈ [0, 1], u ∈ Rn(8.1)

u(0) ∈ B0, u(1) ∈ B1(8.2)

where G ∈ C0([0, 1],Rm), F : [0, 1] × Rn × Rm → Rn are differentiable; B0 and B1 are
submanifolds of Rn with dimB0 = k and dimB1 = n− k.

Note that the augmented system

u′ =F (x, u,G(x)), x′ = 1(8.3)

is an autonomous system with phase space Rn+1. The boundary value problem is then
equivalent to the connecting problem: finding an orbit of (8.3) that connects B0 × {0} and
B1 × {1}. Let M0 and M1 be the collections of orbits through B0 × {0} and B1 × {1}. Let
φ(x; v) be the solution of (8.1) with φ(0; v) = v. Then, φ∗ : Rn → Rn given by φ∗(v) = φ(1, v)
is a diffeomorphism. The next lemma is simple.

Lemma 8.1. Suppose M0 and M1 intersect transversally along an orbit (u(x), x) of (8.3)
associated with G ∈ C0([0, 1],Rm). Then B0 and φ−1

∗ (B1) intersect transversally at u(0). If
Φ(x) is the principal fundamental matrix solution at x = 0 for

U ′ = Fu(x, u(x), G(x))U,

then Dφ−1
∗ (u(1)) = Φ−1(1), and hence, Tu(0)φ

−1
∗ (B1) = Φ−1(1)Tu(1)B1 and

Tu(0)B0 ⊕ Φ−1(1)Tu(1)B1 = Rn.(8.4)
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Let P0 : Rn → Tu(0)B0 be the projection associated to the decomposition in (8.4).
Let u(x) be a solution of the boundary value problem (8.1) and (8.2) associated with

G ∈ C0([0, 1],Rm) that is resulted as a transversal intersection described in Lemma 8.1.
Then, by continuity, there is a neighborhood N of zero in C0([0, 1],Rm) such that, for g ∈ N ,
the boundary value problem (8.1) and (8.2) with G replaced by G+ g has a unique solution
ug(x) near u(x).

Proposition 8.2. The mapping S : N → C1([0, 1],Rn) defined by S(g) = ug(x) is
Fréchet differentiable at g = 0; that is, there exists a bounded linear operator L : C0([0, 1],Rm)→
C1([0, 1],Rn) such that, with S(0) = u(x),

lim
g→0

‖S(g)− S(0)− Lg‖C1
‖g‖C0

= 0.

In fact, the Fréchet derivative L = DS of the mapping S is given by

(Lg)(x) = Φ(x)

∫ x

0

Φ−1(s)FG(s, u(s), G(s))g(s)ds

(8.5)

−Φ(x)P0

∫ 1

0

Φ−1(s)FG(s, u(s), G(s))g(s)ds.

Proof. Without loss of generality, we assume that B0 and B1 are linear near u(0) and
u(1), respectively, so that

P0(ug(0)− u(0)) = ug(0)− u(0) and P0 : Φ−1(1)(ug(1)− u(1)) = 0.(8.6)

Note that

(ug − u)
′

= F (x, ug, G(x) + g(x))− F (x, u,G(x))

= Fu(x, u(x), G(x))(ug − u) + FG(x, u(x), G(x))g(x) + o(‖ug − u‖C0 + ‖g‖C0).

In the following, we will denote FG(x, u(x), G(x)) by FG(x). Thus,

ug(x)− u(x) = Φ(x)(ug(0)− u(0)) + Φ(x)

∫ x

0

Φ−1(s)FG(s)g(s)ds

(8.7)
+o(‖ug − u‖C0 + ‖g‖C0),

and hence, ‖ug − u‖C0 ≤ K (|ug(0)− u(0)|+ ‖g‖C0). We now have

Φ−1(1) (ug(1)− u(1)) = ug(0)− u(0) +

∫ 1

0

Φ−1(s)FG(s)g(s)ds+ o(‖ug − u‖C0 + ‖g‖C0).

Applying the projection P0 to the above relation, it follows from (8.6) that

ug(0)− u(0) = −P0

∫ 1

0

Φ−1(s)FG(s)g(s)ds+ o(‖ug − u‖C0 + ‖g‖C0).(8.8)

Substitute into (8.7) to get

ug(x)− u(x) = −Φ(x)P0

∫ 1

0

Φ−1(s)FG(s)g(s)ds+ Φ(x)

∫ x

0

Φ−1(s)FG(s)g(s)ds

(8.9)
+o(‖ug − u‖C0 + ‖g‖C0),

which implies that ‖ug − u‖C0 ≤ K‖g‖C0 . Substitute back into (8.9) to have

ug(x)− u(x) + Φ(x)P0

∫ 1

0

Φ−1(s)FG(s)g(s)ds− Φ(x)

∫ x

0

Φ−1(s)FG(s)g(s)ds = o(‖g‖C0).
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With Lg defined in (8.5), we then have,

lim
g→0

‖ug − u− Lg‖C0
‖g‖C0

= 0.(8.10)

Furthermore, we note, from (8.8) and (8.10), that

lim
g→0

∣∣∣ug(0)− u(0) + P0

∫ 1

0
Φ−1(s)FG(s)g(s)ds

∣∣∣
‖g‖C0

= 0.

To complete the proof, we need to show that

‖u′g − u′ − (Lg)′‖C0 = o (‖g‖C0) .

From the equation, we have

u′g(x)− u′(x) = F (x, ug(x), G(x) + g(x))− F (x, u(x), G(x))

= Fu(x, u(x), G(x))(ug(x)− u(x)) + FG(x, u(x), G(x))g(x)

+o(ug(x)− u(x)) + o(g(x))

= Fu(x, u(x), G(x))(Lg)(x) + FG(x, u(x), G(x))g(x) + o(g(x)).

Therefore

u′g(x)− u′(x)− (Fu(x, u(x), G(x))(Lg)(x) + FG(x, u(x), G(x))g(x)) = o(g(x)).

One checks directly that

(Lg)′(x) = Fu(x, u(x), G(x))(Lg)(x) + FG(x, u(x), G(x))g(x).

We thus obtain

lim
g→0

‖u′g − u′ − (Lg)′‖C0
‖g‖C0

= 0.

This together with (8.10) establishes the result.
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