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Abstract

In this work, we are interested in effects of a simple profile of perma-
nent charges on ionic flows. We determine when a permanent charge
produces current reversal. We adopt the classical Poisson-Nernst-
Planck models of ionic flows for this study. The starting point of
our analysis is the recently developed geometric singular perturbation
approach for Poisson-Nernst-Planck models. Under the setting in the
paper for case studies, we are able to identify a single governing equa-
tion for the existence and the value of the permanent charge for a cur-
rent reversal. A number of interesting features are established. The
related topic on reversal potential can be viewed as a dual problem
and is briefly examined in this work too.
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1 Introduction

Electrodiffusion—migration of charges—exhibits incredibly rich phenomena.
Indeed, our digital technology is a direct result of the rich but easily con-
trolled behaviors of electrodiffusion. Recently, it has become clear that ion
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channels are described by physics fundamentally similar to that of semi-
conductor devices (see, e.g., [13, 14, 15]). Ion channels are proteins with a
hole in their middle that control a wide range of biological functions. In-
deed, almost all biological functions are controlled one way or another by ion
channels, just as almost all digital functions are controlled by the channels
of field effect transistors.

The study of electrodiffusion is thus an extremely rich area for multidis-
ciplinary research with diverse applications from computer science, through
engineering to biology in which mathematics may lend an important hand
by generalizing and understanding the principles that allow control of elec-
trodiffusion. For semiconductors and ion channels, permanent charges add
an additional component – probably the most important one – to the rich
behavior. A single permanent distribution of charge (i.e., doping) creates
several different devices, with robust reduced descriptions, when different
electrical potentials are placed on its boundaries, e.g., amplifiers, limiters,
multipliers, logarithmic convertors, exponentiators, and so on. Permanent
charges come into the picture in semiconductors and ion channels in dif-
ferent ways: for semiconductors, one would like to (at least theoretically)
design a permanent charge (doping profile) for the semiconductor to achieve
a desired performance; for ion channels, one would like to detect (see, e.g.,
[8, 9, 10]) the distribution of permanent charges – a structural property of
ion channels – and to analyze its roles in ion channel functions (permeation,
selectivity, stability, etc.). Synthetic ion channels are now being created
([44], etc.) in which the distributions of permanent charge can be created
and tested and exploited for technological use.

In this work, we will focus on some basic questions about how perma-
nent charges affect ionic flows; more precisely, we will study when and how
a permanent charge produces current reversal using the classical Poisson-
Nernst-Planck model for ionic flows. It is important to remember that our
model is a reduced model with effective parameters that depend on atomic
scale details in many ways. In fact, for ion channels, a permanent charge re-
flects the structure of the channel protein, and its distribution of amino acid
side chains, with acidic side chains contributing permanent negative charge
and basic side chains contributing permanent positive charge, according to
their ionization states, regulated by local pH. Thus, what we call perma-
nent charge density can depend on the location of many atoms, the shape
of the protein, etc. Reduced models are needed to compute current-voltage
relations of channels in a variety of ionic conditions. As far as we know, all
atom simulations cannot deal with the range of concentrations important
for biological function, e.g., calcium ions at 10−8M.
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1.1 Poisson-Nernst-Planck models for ionic flows

There are many models, from low resolution to high, for ionic flows in various
settings (see, e.g., [2, 3, 4, 11, 12, 16, 18, 21, 22, 23, 24, 28, 29, 30, 35, 36, 37,
40, 41, 43, 45, 46, 51, 52, 53, 54]). Among them, primitive Poisson-Nernst-
Planck models have been extensively examined analytically and numerically.

In this work, we take a one-dimensional Poisson-Nernst-Planck (PNP)
model. A one-dimensional dimensionless steady-state PNP system for n
types of ion species through ion channels is, for k = 1, 2, · · · , n,

ε2

h(x)

d

dx

(
h(x)

d

dx
φ

)
=−

n∑
s=1

αscs −Q(x),

dJk
dx

= 0, −Jk =h(x)Dkck
d

dx
µk

(1.1)

with the boundary conditions

φ(0) = V0, ck(0) = lk ≥ 0; φ(1) = 0, ck(1) = rk ≥ 0. (1.2)

Here ε2 � 1 is a dimensionless parameter, h(x) represents the cross-section
area of the ion channel over x, φ is the electric potential, Q(x) is the per-
manent charge, and, for the kth ion species, ck is its concentration (number
density), αk is its valence (number of charges per particle), Dk is the diffu-
sion coefficient, µk is the electrochemical potential, Jk is its scaled ion flux
density, lk and rk are its concentrations at the boundaries (left and right
baths). For boundary conditions, one often imposes the electroneutrality
conditions on the concentrations

n∑
s=1

αsls =

n∑
s=1

αsrs = 0. (1.3)

The electrochemical potential µk(x) for the kth ion species consists of
the ideal component µidk (x) and the excess component µexk (x):

µk(x) = µidk (x) + µexk (x)

where the ideal component is

µidk (x) = αkφ(x) + ln
ck(x)

c0
(1.4)

with some characteristic number density c0. Since the only relevant quantity

from the chemical potential ln
ck(x)

c0
is its gradient, without loss of generality,
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we will set c0 = 1 in the sequel. The classical PNP model only deals with
the ideal component µidk (x), which reflects the collision between ion particles
and water molecules and ignores the size of ions. The excess electrochemical
potential µexk (x) accounts for the finite size effect of ions. This component
is essential for dealing with properties of bulk ionic solutions containing
divalents like calcium ions, or mixtures, and is in fact needed whenever
concentrations exceed say 50 mM, as they almost always do in technological
and biological situations. This component is extremely important for many
critical properties of ion channels, for example, ideal sodium and potassium
solutions are indistinguishable, but life depends on the ability of channels
to distinguish between these ions. We refer the readers to, for example,
[5, 6, 7, 47, 49, 50] for concrete models. In applications, both local models
for µexk (x) (a function of the values {cj(x)} at x) and nonlocal models for
µexk (x) (a functional of the functions {cj}) are employed for a variety of
purposes.

1.2 An elementary property and a basic question

We will briefly discuss a particular aspect of ionic flows from the model
which leads to our question in terms of specific quantities in the model.

Dividing h(x)Dkck through the Nernst-Planck equation for the ion flux
Jk in (1.1) and integrating from x = 0 to x = 1, one has

Jk

∫ 1

0

1

h(x)Dkck(x)
dx = µk(0)− µk(1). (1.5)

Since h(x) and ck(x) are positive, the sign of Jk is the same as that of
µk(0)−µk(1). For any local model of µexk , the latter is completely determined
by the boundary values of electric potential V0 and of concentrations lk’s and
rk’s; in particular, it is independent of a permanent charge. In the language
of biologists and chemists, the sign of Jk is determined by the driving force
(the gradient of electrochemical potential) and not the structure (permanent
charge Q) of the channel protein.

For the classical PNP model where µk(x) = µidk (x) = αkφ(x) + ln ck(x),
one has the explicit formula for µk(0)− µk(1):

Jk

∫ 1

0

1

h(x)Dkck(x)
dx = µk(0)− µk(1) = αkV0 + ln

lk
rk
. (1.6)

On the other hand, the actual amount of each Jk does depend on Q since
the profile of concentration ck(x) does. An important quantity involving
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the amount of each Jk is the current I. For given V0, Q(x), lk’s and rk’s,
if (φ(x; ε), ck(x; ε), Jk(ε)) is a solution of the boundary value problem (1.1)
and (1.2), then the current I is

I = I(ε) =
n∑
s=1

αsJs(ε). (1.7)

The electrical current is the important variable for a number of reasons.
(1) It is what is almost always measured. (2) Almost all our technology
involves electrical currents and potentials. Little involves ion fluxes. (3)
Maxwell’s equations can be viewed as the ultimate statement of conservation
of charge, a generalization of Kirchhoff’s current law that says current is
always exactly conserved no matter how different the carrier of the current
(electrons in a cathode ray tube, the displacement current in a vacuum,
holes and ‘electrons’ in a semiconductor, ions in an electrolyte solution).

It is important to realize that the components of the current can be
positive or negative because of the sign of αk’s of the charges. Thus the
current has much more complexity than the individual ion fluxes. We are
thus interested in how the sign of the current depends on the permanent
charge via classical PNP models.

For classical PNP models with the electroneutrality assumption (1.3) and
that Dk = 1, it is known (e.g., [4, 48] for n = 2 and [42] for general n) that,
if Q = 0, then V0 and I have the same sign (independent of the boundary
concentrations lk’s and rk’s). Furthermore, as an immediate consequence of
(1.6), one has the simple property below.

Proposition 1.1. If the quantities αk(αkV0+ln lk−ln rk), for k = 1, 2, . . . , n,
are all nonnegative (nonpositive), then the quantities αkJk’s are all nonneg-
ative (nonpositive), and hence, the current I is nonnegative (nonpositive)
too, independent of a permanent charge Q; that is, under the above condi-
tion on V0, lk’s and rk’s, no permanent charge Q can reverse the sign of the
current I.

In general, the sign of the current I could be reversed. This fact has
been used to identify the type (i.e., selectivity) of ion channels in biological
experiments since 1949 ([26, 27]). A natural question is then:

Question: Under what conditions on V0, lk’s and rk’s, can current I be
reversed for appropriate choices of permanent charges Q ?

We raise this question from the mathematical analysis point of view,
which captures the general physical and biological importance of the issue.
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The profile of Q in general governs many of the properties of ion channels
and semiconductor devices.

A related well-known topic is the reversal potential: for given Q, lk’s
and rk’s, what is the so-called reversal potential V0 so that I = 0? Identifi-
cation of reversal potentials is a central subject in experiments on channels;
indeed, identification of reversal potentials is often a prerequisite for further
identification of a channel or transporter.

1.3 Setup of our case study

To this end, we specify the case we will study in this paper. We will examine
the question by working on the simplest model, the classical PNP (cPNP)
model (1.1) with ideal electrochemical potential µk = αkφ + ln ck, and the
boundary condition (1.2). We will focus on the case with equal diffusion co-
efficients (see Remark 1.1 below) and with a simplest profile of a permanent
charge Q. More precisely, we will assume

(A1) Dk = 1 for k = 1, 2, . . . , n, and h(x) = 1;

(A2) Electroneutrality boundary conditions (1.3);

(A3) A piecewise constant permanent charge Q with one nonzero region;
that is, for a partition x0 = 0 < x1 < x2 < x3 = 1 of [0, 1],

Q(x) =

{
0, x ∈ (x0, x1) ∪ (x2, x3)
Q2, x ∈ (x1, x2)

(1.8)

where Q2 is a constant.

Remark 1.1. In general, it is limiting to assume that all diffusion coeffi-
cients are equal. It is known experimentally that many phenomena (e.g.,
diffusion potentials) disappear altogether when diffusion coefficients of anion
and cation are equal (in a two species solution). In other words this is a de-
generate case and whatever phenomena presented here serve as motivation
to study the additional important phenomena of non-degenerate cases.

For the current reversal effect caused by a permanent charge Q in (A3),
we look for the value(s) Q∗ for Q2 so that the corresponding current I is
zero. Suppose Q∗ exists. Then, generically, the current I will change sign
as Q2 crosses Q∗. Motivated by the terminology of reversal potential, we
give the following definition.
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Definition 1.2. If, for Q2 = Q∗, the current I = 0, then we call the
permanent charge Q in (A3) a reversal permanent charge; or, we simply call
Q∗ a reversal permanent charge.

To answer the questions about reversal permanent charges and reversal
potentials, one has to examine the dependences of the current I on the
boundary potential V0 and the permanent charge Q. In terms of the cPNP
model, we need to analyze the BVP (1.1) and (1.2). We will treat system
(1.1) as a singularly perturbed system with ε as the singular parameter.
Also, we will focus on information from the zeroth order approximation of
solutions of the BVP (1.1) and (1.2), which dominates the quantitive and
qualitative properties of the problem interested in this work.

2 Geometric singular perturbations for the BVP
(1.1) and (1.2)

In [39], a geometric singular perturbation framework, combining with special
structures of PNP systems, has been developed for studying the BVP (1.1)
and (1.2). This general dynamical system framework and the subsequent
analysis have demonstrated the great power of analyzing PNP type problems
with potential boundary and internal layers (see [17, 38, 39, 42] for study
on cPNP models, [37] for PNP with a local excess hard-sphere components,
and [30, 40] for PNP with nonlocal excess hard-sphere components).

For convenience, we will give a brief account of the relevant results in
[39] (with slightly different notations) and refer the readers to the paper
for details. We remind the readers that we will work on cPNP with ideal
electrochemical potential µk = αkφ+ ln ck.

2.1 Converting the BVP to a connecting orbit problem

We rewrite system (1.1) into a standard form of singularly perturbed systems
and convert the BVP to a connecting orbit problem.

Denote the derivative with respect to x by overdot and introduce u = εφ̇
and w = x. System (1.1) becomes, for k = 1, 2, . . . , n,

εφ̇ =u, εu̇ = −
n∑
s=1

αscs −Q(w),

εċk =− αkcku− εJk, J̇k = 0, ẇ = 1.

(2.1)
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System (2.1) will be treated as a dynamical system with the phase space
R2n+3 and the independent variable x is viewed as time for the dynamical
system. The boundary condition (1.2) becomes, for k = 1, 2, . . . , n,

φ(0) = V0, ck(0) = lk, w(0) = 0; φ(1) = 0, ck(1) = rk, w(1) = 1.

Let BL and BR be the subsets of the phase space R2n+3 defined by

BL ={(φ, u, C, J, w) : φ = V0, C = L, w = 0},
BR ={(φ, u, C, J, w) : φ = 0, C = R, w = 1},

(2.2)

where C = (c1, c2, . . . , cn)T , J = (J1, J2, . . . , Jn)T , L = (l1, l2, . . . , ln)T ,
R = (r1, r2, . . . , rn)T . Note that dimBL = dimBR = n+ 1.

Then, the BVP (1.1) and (1.2) is equivalent to the following connecting
orbit problem: finding an orbit of (2.1) from BL to BR.

We now explain the idea for a construction of a connecting orbit. Let M ε
L

be the collection of all forward orbits of (2.1) starting from BL and M ε
R be

the collection of all backward orbits starting from BR. For ε > 0 small, due
to w-equation in (2.1), the vector field of (2.1) is not tangent to BL and BR.
It implies that both M ε

L and M ε
R are smooth invariant manifolds of (2.1)

and dimM ε
L = dimM ε

R = dimBL + 1 = dimBR + 1 = n + 2. Generically,
one expects that M ε

L and M ε
R intersect transversally. If this is the case,

then dim(M ε
L ∩M ε

R) = dimM ε
L + dimM ε

R − dimR2n+3 = 1, and hence, the
intersection M ε

L ∩M ε
R would consist of a discrete set of orbits of (2.1). To

find a connecting orbit from BL to BR, it amounts to show that M ε
L and

M ε
R intersect. The geometric procedure for the latter involves two steps:

(i) to construct a singular orbit: a union of fast and slow orbits of dif-
ferent limiting systems of (2.1), where fast orbits represent bound-
ary/internal layers and slow orbits connect boundary/internal layers;

(ii) to examine the evolutions of M ε
L and M ε

R along the singular orbit and
apply the exchange lemma (see, e.g., [31, 32]) to show a nonempty
intersection.

For this work, we will be interested in only singular orbits of the problem
and will recall the procedure of constructing singular orbits from [39].

Due to the jumps of Q(x) at xj ’s, we preassign (unknown) values of φ
and ck’s at xj as

φ(xj) = φ[j], ck(xj) = c
[j]
k , (2.3)

and, for each jump point xj of Q(x), introduce the set,

Bj = {(φ, u, C, J, w) : φ = φ[j], C = C [j], w = xj}. (2.4)
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We then construct singular orbits over each interval [xj−1, xj ] for the con-
necting problem between Bj−1 and Bj . At the end, we match those singular
orbits at each xj to obtain one singular orbit over the whole interval [0, 1].

2.2 Construction of singular orbits connecting Bj−1 and Bj.

A typical singular connecting orbit between Bj−1 and Bj will consist of two
fast orbits (singular layers) Γ[j−1,+] at xj−1 and Γ[j,−] at xj , and one slow
orbit (regular layer) Λj over [xj−1, xj ] (see Fig. 1).

ïQ

u

w

Y_

0

B B

x

R

K K

jjï1

jxjï1

j
t(T            ) _(T         )

Zj

[jï1, +] [j, ï]

[j, ï][jï1, +]

scs

j

Figure 1: A singular orbit over [xj−1, xj ] projected to the space of variables
u,
∑
αscs and w: Γ[j−1,+] is a singular layer at x = xj−1 from Bj−1 to Zj

and Γ[j,−] from Zj to Bj, and Λj connects “landing” points of Γ[j−1,+] in
ω(N [j−1,+]) and “departing” points of Γ[j,−] in α(N [j,−]) on Zj.

2.2.1 Fast dynamics for singular layers at xj−1 and xj

By setting ε = 0 in system (2.1), we get the slow manifold

Zj =
{
u = 0,

n∑
s=1

αscs +Qj = 0
}
.

Note that Zj is of co-dimension two, i.e., dimZj = 2n + 1. In terms of
the independent variable ξ = x/ε, we obtain the fast system of (2.1), for
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k = 1, 2, . . . , n,

φ′ =u, u′ = −
n∑
s=1

αscs −Qj , c′k = −αkcku− εJk, J ′ = 0, w′ = ε, (2.5)

where prime denotes the derivative with respect to ξ. The limiting fast
system is, for k = 1, 2, . . . , n,

φ′ =u, u′ = −
n∑
s=1

αscs −Qj , c′k = −αkcku, J ′ = 0, w′ = 0. (2.6)

The slow manifold Zj is precisely the set of equilibria of (2.6). Recall that
dimZj = 2n + 1. For the linearization of (2.6) at each point on Zj , there
are (2n+ 1) zero eigenvalues associated to the tangent space of Zj and the
other two eigenvalues are ±

√∑n
s=1 α

2
scs. Thus, Zj is normally hyperbolic

(see [19, 25]). We will denote the stable and unstable manifolds of Zj by
W s(Zj) and W u(Zj), respectively.

Let M [j−1,+] be the collection of all forward orbits from Bj−1 under
the flow of (2.6) and let M [j,−] be the collection of all backward orbits
from Bj . Then the set of forward orbits from Bj−1 to Zj is N [j−1,+] =
M [j−1,+]∩W s(Zj), and the set of backward orbits from Bj to Zj is N [j,−] =
M [j,−] ∩ W u(Zj). Therefore, the singular layer Γ[j−1,+] at xj−1 satisfies
Γ[j−1,+] ⊂ N [j−1,+] and the singular layer Γ[j,−] at xj satisfies Γ[j,−] ⊂ N [j,−].

All those important geometric objects in the previous paragraph are
explicitly characterized in [39]. For general nonlinear singular perturbation
problems, this is of course unexpected. It is only possible for the problem at
hand due to the special structures of cPNP stated next. We suspect that this
special property of cPNP (and relate systems) is related to their importance
in semiconductor technology and biology.

Proposition 2.1. The following functions are first integrals of system (2.6),

Gk = ln ck + αkφ for k = 1, 2, . . . , n and Gn+1 =
u2

2
−

n∑
s=1

cs +Qjφ.

Proof. This is Proposition 3.1 in [39] and can also be verified directly.

In [39], intermediate variables φ[j−1,+] and φ[j,−] are introduced for char-
acterizing the singular layers.
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Lemma 2.2. There is a unique φ = φ[j−1,+] satisfying

n∑
s=1

αsc
[j−1]
s eαs(φ

[j−1]−φ) +Qj = 0; (2.7)

and a unique φ = φ[j,−] satisfying

n∑
s=1

αsc
[j]
s e

αs(φ[j]−φ) +Qj = 0. (2.8)

One can then characterize all layers Γ[j−1,+] from Bj−1 to Zj and Γ[j,−]

from Zj to Bj , which is the content of Proposition 3.3 in [39] recast below.

Proposition 2.3. (i) Let Γ[j−1,+] ⊂ N [j−1,+] be a singular layer at x =
xj−1. Suppose Γ[j−1,+] is the orbit of the solution z(ξ) = (φ(ξ), u(ξ), C(ξ), J, xj−1)
with z(0) ∈ Bj−1 and limξ→+∞ z(ξ) = z(+∞) ∈ Zj. Then, φ(ξ) is deter-
mined by the Hamiltonian system

φ′′ +
n∑
s=1

αsc
[j−1]
s e−αs(φ−φ

[j−1]) +Qj = 0

together with the conditions φ(0) = φ[j−1] and φ(+∞) = φ[j−1,+] where

φ[j−1,+] is as in Lemma 2.2; u(ξ) = φ′(ξ) with u(0) = u
[j−1]
+ and u(+∞) = 0,

where

u
[j−1]
+ = δ

[j−1]
+

√√√√ n∑
s=1

2c
[j−1]
s (1− eαs(φ[j−1]−φ[j−1,+]))− 2Qj(φ[j−1] − φ[j−1,+])

(2.9)

where δ
[j−1]
+ = sgn(φ[j−1,+] − φ[j−1]) is the sign function; and

ck(ξ) = c
[j−1]
k e−αk(φ(ξ)−φ

[j−1])

with ck(0) = c
[j−1]
k and

c
[j−1,+]
k := ck(+∞) = c

[j−1]
k e−αk(φ

[j−1,+]−φ[j−1]). (2.10)

Let Γ[j,−] ⊂ N [j,−] be a singular layer at x = xj. Suppose Γ[j,−] is
the orbit of the solution z(ξ) = (φ(ξ), u(ξ), C(ξ), J, xj) with z(0) ∈ Bj and
limξ→−∞ z(ξ) = z(−∞) ∈ Zj. Then, φ(ξ) is determined by the Hamiltonian
system

φ′′ +
n∑
s=1

αsc
[j]
s e
−αs(φ−φ[j]) +Qj = 0
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together with the conditions φ(0) = φ[j] and φ(−∞) = φ[j,−] where φ[j,−] is

as in Lemma 2.2; u(ξ) = φ′(ξ) with u(0) = u
[j]
− and u(−∞) = 0, where

u
[j]
− = δ

[j]
−

√√√√ n∑
s=1

2c
[j]
s (1− eαs(φ[j]−φ[j,−]))− 2Qj(φ[j] − φ[j,−]), (2.11)

where δ
[j]
− = sgn(φ[j]−φ[j,−]); ck(ξ) = c

[j]
k e
−αk(φ(ξ)−φ[j]) with ck(0) = c

[j]
k and

c
[j,−]
k := ck(−∞) = c

[j]
k e
−αk(φ[j,−]−φ[j]). (2.12)

(ii) The intersections M [j−1,+]∩W s(Zj) and M [j,−]∩W u(Zj) are transver-
sal.

(iii) The ω-limit set of N [j−1,+] and the α-limit set of N [j,−] are

ω
(
N [j−1,+]

)
=
{(
φ[j−1,+], 0, C [j−1,+], J, xj−1

)
: all J

}
⊂ Zj ,

α
(
N [j,−]

)
=
{(
φ[j,−], 0, C [j,−], J, xj

)
: all J

}
⊂ Zj .

We end this part with a discussion of interfacial behavior of electric
potential at jump points of permanent charges.

Proposition 2.4. If Qj < Qj+1 (resp. Qj > Qj+1), then

φ[j,−] < φ[j] < φ[j,+] (resp. φ[j,−] > φ[j] > φ[j,+]).

Proof. We show the result for the case where Qj < Qj+1. Set

f(t) =

n∑
s=1

αsc
[j]
s e

αst.

It follows from (2.7) and (2.8) that

f(φ[j] − φ[j,−]) = −Qj > f(φ[j] − φ[j,+]) = −Qj+1.

Since f ′(t) > 0, φ[j] − φ[j,−] > φ[j] − φ[j,+], and hence, φ[j,−] < φ[j,+].

The remark below will be useful for readers to have a better understand-
ing of the possibility of the results obtained in the paper and difficulties
involved in obtaining the results.

12



Remark 2.1. Proposition 2.4 indicates that a jump-up of permanent charge
Qj+1 > Qj at the junction causes a jump-up of the potential φ[j,+] > φ[j,−]

and a jump-down of permanent charge Qj+1 < Qj causes a jump-down of
the potential φ[j,+] < φ[j,−].

The amount of jump-up or jump-down of the potential is NOT deter-
mined by that of Q alone but involves other system parameters. For exam-
ple, if Qj−1 = Qj+1 < Qj, that is, the amount of jump-up of Q at xj−1
equals the amount of jump-down at xj, the jump-up φ[j−1,+] − φ[j−1,−] > 0
at xj−1 and the jump-down φ[j,+]−φ[j,−] < 0 at xj do not cancel each other
in general; that is, |φ[j−1,+] − φ[j−1,−]| 6= |φ[j,+] − φ[j,−]|.

The above property is extremely important since it allows even simple
permanent charge distributions to have a great impact on ionic flows (see
results in Sections 3 and 4). We believe that it is this property that allows
doping distributions in semiconductor devices to control their behavior. One
can anticipate similar controls in biological channels, although they have not
yet been definitively identified.

2.2.2 Slow dynamics for regular layers over (xj−1, xj)

We will now construct slow orbits Λj on the slow manifold

Zj =
{
u = 0,

∑
s=1

αscs +Qj = 0
}
.

From Proposition 2.3, possible landing points of Γ[j−1,+] onto Zj are ω(N [j−1,+])
and possible departing points of Γ[j,−] from Zj are α(N [j,−]). If Λj connects
ω(N [j−1,+]) to α(N [j,−]), then the union Γ[j−1,+] ∪ Λj ∪ Γ[j,−] is a singular
orbit connecting Bj−1 to Bj .

Note that system (2.1) is degenerate at ε = 0 in the sense that all
dynamical information on (φ, c1, · · · , cn) would be lost when setting ε = 0.
In [39], the dependent variables are rescaled as

u = εp, αncn = −
n−1∑
s=1

αscs −Qj − εq. (2.13)

Replacing (u, cn) with (p, q), system (2.1) becomes, for k = 1, 2, . . . , n−1,

φ̇ =p, εṗ = q,

εq̇ =
( n−1∑
s=1

(αs − αn)αscs − αnQj − εαnq
)
p+ I,

ċk =− αkpck − Jk, J̇ = 0, ẇ = 1,

(2.14)
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where I =
∑n

s=1 αsJs is the current. We remark that this is the reason
that Dk = 1 assumption (A1) simplifies the analysis of the problem greatly.
Without assumption (A1), the term I in (2.14) would be

∑n
s=1D

−1
s αsJs

and the analysis in Section 3 would be much more complicated.
The limiting slow system of (2.14) is, for k = 1, 2, . . . , n− 1,

φ̇ =p, q =
( n−1∑
s=1

(αs − αn)αscs − αnQj
)
p+ I = 0,

ċk =− αkpck − Jk, J̇ = 0, ẇ = 1.

(2.15)

For this system, the slow manifold is

Sj =

{
p = − I∑n−1

s=1 (αs − αn)αscs − αnQj
, q = 0

}
.

Therefore, on Sj system (2.15) reads, for k = 1, 2, . . . , n− 1,

φ̇ =− I∑n−1
s=1 (αs − αn)αscs − αnQj

,

ċk =
I∑n−1

s=1 (αs − αn)αscs − αnQj
αkck − Jk,

J̇ =0, ẇ = 1.

(2.16)

Another special structure of the cPNP comes in to play a crucial role for
analyzing the limiting slow dynamics.

On Sj where q =
∑n

s=1 αscs +Qj = 0, it follows from (2.13) that

n−1∑
s=1

(αs − αn)αscs − αnQj =

n∑
s=1

α2
scs.

Note that ck’s are the concentrations of ion species. Therefore, we will
be interested in solutions with ck > 0 for k = 1, 2, · · · , n, and hence,∑n

s=1 α
2
scs > 0. If we multiply

∑n
s=1 α

2
scs > 0 on the right hand side of sys-

tem (2.16), the phase portrait remains the same. In doing so, the system be-
comes, in term of the new independent variable, say τ , for k = 1, 2, . . . , n−1,

d

dτ
φ =− I, d

dτ
ck = Iαkck − Jk

n∑
s=1

α2
scs,

d

dτ
J =0,

d

dτ
w =

n∑
s=1

α2
scs.

(2.17)
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The further treatment below was motived by that in [42] for cPNP with
Q = 0. The observation is that, since

∑n
s=1 αscs +Qj = 0 on Sj , one has

αn
d

dτ
cn =Iα2

ncn − αnJn
n∑
s=1

α2
scs.

Therefore, system (2.17) on Sj is equivalent to, for k = 1, 2, . . . , n,

d

dτ
φ =− I,

n∑
s=1

αscs +Qj = 0,

d

dτ
C =D(J)C,

d

dτ
J = 0,

d

dτ
w = bTC,

(2.18)

where D(J) = IΓ− JbT with

Γ = diag{α1, α2, · · · , αn} and bT =
(
α2
1, α

2
2, · · · , α2

n

)
.

We comment that
∑n

s=1 αscs is a first integral of the system for C in
(2.18). The condition

∑n
s=1 αscs + Qj = 0 reflects that (2.18) is restricted

to Sj which is invariant under (2.18).
The solution of (2.18) with the initial condition (φ[j−1,+], C [j−1,+], J, xj−1) ∈

ω(N [j−1,+]) is

φ(τ) =φ[j−1,+] − Iτ, C(τ) = eD(J)τC [j−1,+],

w(τ) =xj−1 +

∫ τ

0
bTC(z)dz.

(2.19)

Recall that we are looking for regular orbit Λj from ω(N [j−1,+]) to
α(N [j,−]). Assume w(τj) = xj for some τj . Necessarily, φ(τj) = φ[j,−]

and C(τj) = C [j,−]. Evaluate (2.19) at τ = τj to get

φ[j,−] = φ[j−1,+] − Iτj , C [j,−] = eD(J)τjC [j−1,+],

xj =xj−1 +

∫ τj

0
bTC(z)dz.

(2.20)

Note that τj > 0 from the last identity above and that bTC(z) ≥ 0.
System (2.20) is the condition for the existence of singular orbits con-

necting Bj−1 to Bj . In [42], it is shown that, for given (φ[j−1,+], C [j−1,+])
and (φ[j,−], C [j,−]), there is a unique solution of (2.19) satisfying (2.20) and
ck(x) > 0 for all x ∈ (xj−1, xj). We denote the unique J by

JT =
(
J
[j]
1 , J

[j]
2 , . . . , J [j]

n

)
. (2.21)

The following result is a direct consequence of (2.20) and that τj > 0.
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Corollary 2.5. For each j, the drop φ[j−1,+] − φ[j,−] of electric potential
along the regular orbit Λj from xj−1 to xj has the same sign as that of the
current I; in particular, I = 0 if and only if φ[j−1,+] = φ[j,−] for each j.

2.3 Matchings at xj’s for singular orbits over [0, 1]

Once a singular orbit Γ[j−1,+] ∪Λj ∪ Γ[j,−] connecting Bj−1 to Bj over each
subinterval [xj−1, xj ] is constructed, those singular orbits will be matched to
form one singular orbit to connect BL to BR over the whole interval [0, 1].
The matching conditions are

u
[j]
− = u

[j]
+ for each j and, for each k, J

[j]
k is the same for all j. (2.22)

It turns out the number of matching conditions is exactly the number
of pre-assigned unknowns in (2.3). As the result, the matching conditions
provide an algebraic system that governs the existence and multiplicity of
solutions for the BVP (see [39]).

3 Results on current reversal for the case study

We now apply the analysis in previous section to our case study for Q in
(A3). Recall that we are searching conditions on the potential V0 and the
permanent charge Q for current reversal moment I =

∑n
s=1 αsJs = 0.

3.1 Slow and fast dynamics with I = 0

Concerning the slow dynamics, the following results follows directly from
(2.16) with I = 0.

Lemma 3.1. The slow dynamics over (0, x1) with
∑n

s=1 αscs(x) = −Q1 = 0
is given by φ(x) = V0 and ck(x) = lk−Jkx for k = 1, 2, . . . , n; in particular,

φ[1,−] = φ[0,+] = V0 and c
[1,−]
k = lk − Jkx1.

Lemma 3.2. The slow dynamics over (x1, x2) with
∑n

s=1 αscs(x) +Q2 = 0

is given by φ(x) = V∗ for some unknown V∗ and ck(x) = c
[1,+]
k − Jk(x− x1)

for k = 1, 2, . . . , n; in particular, φ[2,−] = φ[1,+] = V∗ and c
[2,−]
k = c

[1,+]
k −

Jk(x2 − x1).

Lemma 3.3. The slow dynamics over (x2, 1) with
∑n

s=1 αsc
[2,+]
s = −Q3 = 0

is given by φ(x) = 0 and ck(x) = rk + Jk(1 − x) for k = 1, 2, . . . , n; in

particular, φ[2,+] = φ[3,−] = 0 and c
[2,+]
k = rk + Jk(1− x2).
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We now collect results for the fast dynamics from §2.2.1 under I = 0.

Lemma 3.4. The fast layer dynamics over x1 provides, for k = 1, 2, . . . , n,

(i) relative to (0, x1) where Q(x) = Q1 = 0 and φ[1,−] = V0:

n∑
s=1

αsc
[1]
s e

αs(φ[1]−V0) = 0, c
[1,−]
k = c

[1]
k e

αk(φ
[1]−V0);

(ii) relative to (x1, x2) where Q(x) = Q2 and φ[1,+] = V∗:

n∑
s=1

αsc
[1]
s e

αs(φ[1]−V∗) +Q2 = 0, , c
[1,+]
k = c

[1]
k e

αk(φ
[1]−V∗);

(iii) the matching u
[1]
− = u

[1]
+ :

∑n
s=1 c

[1,−]
s =

∑n
s=1 c

[1,+]
s +Q2(φ

[1] − V∗).

Lemma 3.5. The fast layer dynamics over x2 provides, for k = 1, 2, . . . , n,

(i) relative to (x1, x2) where Q(x) = Q2 and φ[2,−] = V∗:

n∑
s=1

αsc
[2]
s e

αs(φ[2]−V∗) +Q2 = 0, c
[2,−]
k = c

[2]
k e

αk(φ
[2]−V∗);

(ii) relative to (x2, 1) where Q(x) = Q3 = 0 and φ[2,+] = 0:

n∑
s=1

αsc
[2]
s e

αsφ[2] = 0, c
[2,+]
k = c

[2]
k e

αsφ[2] ;

(ii) the matching u
[2]
− = u

[2]
+ :

∑n
s=1 c

[2,−]
s +Q2(φ

[2] − V∗) =
∑n

s=1 c
[2,+]
s .

Following from the above lemmas, we immediately have, for k = 1, 2, . . . , n,

φ[1,−] =φ[0,+] = V0, φ[2,−] = φ[1,+] = V∗, φ[2,+] = φ[3,−] = 0,

c
[1,−]
k =c

[1]
k e

αk(φ
[1]−V0), c

[1,+]
k = c

[1]
k e

αk(φ
[1]−V∗),

c
[2,−]
k =c

[2]
k e

αk(φ
[2]−V∗), c

[2,+]
k = c

[2]
k e

αkφ
[2]
.
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The remaining relations are

c
[1]
k e

αk(φ
[1]−V0) = lk − Jkx1; c

[2]
k e

αkφ
[2]

= rk + Jk(1− x2);

c
[2]
k e

αk(φ
[2]−V∗) = c

[1]
k e

αk(φ
[1]−V∗) − Jk(x2 − x1);

n∑
s=1

αsc
[1]
s e

αs(φ[1]−V∗) +Q2 = 0,

n∑
s=1

c[1]s e
αs(φ[1]−V0) =

n∑
s=1

c[1]s e
αs(φ[1]−V∗) +Q2(φ

[1] − V∗),

n∑
s=1

c[2]s e
αs(φ[2]−V∗) +Q2(φ

[2] − V∗) =

n∑
s=1

c[2]s e
αsφ[2] .

(3.1)

Together with I = 0, we will determine (φ[1],V∗, φ[2], c[1]k , c
[2]
k , Jk, Q2).

3.2 A general result for reversal permanent charges Q∗.

For fixed V0, lk’s and rk’s, we consider the equation

g(V,V0) :=

n∑
s=1

αs(lse
αsV0 − rs)

1− x2 + x1eαsV0 + (x2 − x1)eαsV
= 0. (3.2)

Our main result for reversal permanent charges is

Theorem 3.6. Assume (A1)-(A3). Then I = 0 if and only if V∗ is a real
root of (3.2). To any real root V = V∗ of (3.2), there corresponds to a
reversal permanent charge Q2 = Q∗ given by

Q∗ = −
n∑
s=1

αse
αs(V0−V∗) (1− x2 + (x2 − x1)eαsV

∗
)ls + x1rs

1− x2 + x1eαsV0 + (x2 − x1)eαsV∗
, (3.3)

and the corresponding ion fluxes Jk’s are given by, for k = 1, 2, . . . , n,

Jk =
lke

αkV0 − rk
1− x2 + x1eαkV0 + (x2 − x1)eαkV∗

. (3.4)

Proof. From the first three equations in (3.1), one has, for k = 1, 2, . . . , n,(
1− x2 + x1e

αkV0 + (x2 − x1)eαkV
∗
)
Jk = lke

αkV0 − rk.

The formula (3.4) for Jk then follows directly. In turn, the equation (3.2)
for V∗ follows from I =

∑
αsJs = 0 and (3.4).
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The first equation and the fourth equation in (3.1) give that

Q∗ =−
n∑
s=1

αs(ls − Jsx1)eαs(V0−V
∗). (3.5)

Substitution of (3.4) into (3.5) yields the formula (3.3).

Note that

g(−∞,V0) = lim
V→−∞

g(V,V0) =
∑
αs>0

αs(lse
αsV0 − rs)

1− x2 + x1eαsV0
,

g(+∞,V0) = lim
V→+∞

g(V,V0) =
∑
αs<0

αs(lse
αsV0 − rs)

1− x2 + x1eαsV0
.

Concerning the equation (3.2), the following result is straightforward and is
consistent with the simple property in Proposition 1.1.

Lemma 3.7. If g(−∞,V0)g(∞,V0) < 0, then g(V,V0) = 0 has at least one
real root V = V∗, and hence, there is a reversal permanent charge Q∗.

In general, the existence of a real root of g(V,V0) = 0 can be formulated
as an eigenvalue problem of a matrix or a matrix pencil (see Section 3.4).
But, a simple version of a sufficient and necessary condition for the existence
is not yet available.

Corollary 3.8. For any reversal permanent charge Q∗ associated to a real
root V∗ of (3.2), the zeroth order approximation of the electric potential
φ(x; ε) is given explicitly by

φ(x; 0) =


V0, x ∈ (x0, x1)
V∗, x ∈ (x1, x2)
0, x ∈ (x2, x3),

and the zeroth order approximation of concentrations ck(x; ε) are

ck(x; 0) =


lk − Jkx, x ∈ (x0, x1)

(lk − Jkx1)eαk(V0−V
∗) − Jk(x− x1), x ∈ (x1, x2)

rk + Jk(1− x), x ∈ (x2, x3).

The values φ[1] and φ[2] are determined explicitly as

φ[1] =
1

Q∗

n∑
s=1

(ls − Jsx1)
(

1− eαs(V0−V∗)
)

+ V∗,

φ[2] =
1

Q∗

n∑
s=1

(rs + Js(1− x2))
(

1− e−αsV∗
)

+ V∗.
(3.6)
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The values for c
[1]
k and c

[2]
k are determined explicitly as

c
[1]
k =(lk − Jkx1)e−αk(φ

[1]−V0), c
[2]
k = (rk + Jk(1− x2))e−αkφ

[2]
. (3.7)

Proof. Substituting the first and third equations in (3.1) into the last two
equations, one has

n∑
s=1

(ls − Jsx1) =
n∑
s=1

(ls − Jsx1)eαs(V0−V
∗) +Q∗(φ[1] − V∗),

n∑
s=1

(rs + Js(1− x2))e−αsV
∗

+Q∗(φ[2] − V∗) =
n∑
s=1

(rs + Js(1− x2)).

The formulas (3.6) for φ[1] and φ[2] follow immediately. The first and third

equations in (3.1) now give the formulas for c
[1]
k and c

[2]
k .

We note that the jumps of φ(x; 0) and ck(x; 0) at each location x1 and
x2 are realized by double layers: Γ[1,−] ∪Γ[1,+] at x1 and Γ[2,−] ∪Γ[2,+] at x2
(see, e.g., [17, 39]).

We do need c
[1]
k ≥ 0 and c

[2]
k ≥ 0. It turns out this is always true.

Lemma 3.9. For k = 1, 2, . . . , n, we have c
[1]
k ≥ 0 and c

[2]
k ≥ 0, and hence,

c
[1,±]
k ≥ 0 and c

[2,±]
k ≥ 0. Thus, any solution V∗ of (3.2) provides a physical

solution for a current reversal.

Proof. It follows directly from (3.4) that, for any 1 ≤ k ≤ n,

lk − Jkx1 =
((1− x2) + (x2 − x1)eαkV

∗
)lk + x1rk

1− x2 + x1eαkV0 + (x2 − x1)eαkV∗
> 0, (3.8)

rk + Jk(1− x2) =
lk(1− x2)eαkV0 + (x1e

αkV0 + (x2 − x1)eαkV
∗
)rk

1− x2 + x1eαkV0 + (x2 − x1)eαkV∗
> 0.

The claim then follows from (3.7).

3.3 A general result for reversal potential V0.

In view of the duality of reversal potential V0 and the reversal permanent
charge Q∗, we now present a general result for reversal potential V0 with Q
in (A3). We comment that there are differences between these two prob-
lems. There is a simple necessary condition for the existence of the reversal
permanent charge Q∗ as discussed above. On the other hand, as probably
expected, reversal potentials should always exist. This is indeed established
below for the special case of permanent charges Q in (A3).

20



Theorem 3.10. For any given permanent charge Q in (A3), reversal po-
tentials always exist, and the number of reversal potentials is odd.

Proof. Due to (3.2) and (3.3), it amounts to prove that, for any Q2, there
is a (real) solution (V,V0) of the system

g(V,V0) = 0 and f(V,V0) +Q2 = 0

where g(V,V0) is defined in (3.2) and

f(V,V0) =

n∑
s=1

αse
αs(V0−V ) (1− x2 + (x2 − x1)eαsV )ls + x1rs

1− x2 + x1eαsV0 + (x2 − x1)eαsV
.

This will be accomplished in three steps.

Claim 1. For any fixed V , there is a unique V0 so that g(V,V0) = 0.
Indeed, for any fixed V , one has

lim
V0→+∞

g(V,V0) > 0, lim
V0→−∞

g(V,V0) < 0,
d

dV0
g(V,V0) > 0.

Claim 1 then follows. Denote the solution of g(V,V0) = 0 by V0 = h(V ).

Claim 2. There are m < M , independent of V , so that V0 = h(V ) ∈ [m,M ].
Suppose, on the contrary, that the claim is wrong. Then, at least one of

the following occurs

(i) ∃Vn such that, as n→∞, Vn → +∞ and V0 = h(Vn)→ +∞;

(ii) ∃Vn such that, as n→∞, Vn → −∞ and V0 = h(Vn)→ −∞;

(iii) ∃Vn such that, as n→∞, Vn → +∞ and V0 = h(Vn)→ −∞;

(iv) ∃Vn such that, as n→∞, Vn → −∞ and V0 = h(Vn)→ +∞.

Simple calculations, from the formula of g(V,V0) in (3.2), give

lim
n→∞

g(Vn, h(Vn)) >0 for case (i), lim
n→∞

g(Vn, h(Vn)) < 0 for case (ii),

lim
n→∞

g(Vn, h(Vn)) <0 for case (iii), lim
n→∞

g(Vn, h(Vn)) > 0 for case (iv).

Each case contradicts to that g(Vn, h(Vn)) = 0. Claim 2 is then established.
Based on Claim 2, one can show easily that

lim
V→+∞

f(V, h(V )) = −∞ and lim
V→−∞

f(V, h(V )) = +∞. (3.9)

Therefore, there is an odd number of roots V = V∗ of f(V∗, h(V∗))+Q2 = 0.
With V0 = h(V∗), one then has g(V∗,V0) = f(V∗,V0) +Q2 = 0.
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3.4 An equivalent eigenvalue problem of equation (3.2)

In this part, we transform equation (3.2) to an eigenvalue problem. First of
all, it can be checked directly that (3.2) is equivalent to

g(V,V0) = d+
n∑
s=1

ws

ms + nse|αs|V
= 0, (3.10)

where

d =
∑
αs<0

αs(lse
αsV0 − rs)

1− x2 + x1eαsV0
, ws =

{
αs(lse

αsV0 − rs), αs > 0,
−αs(lseαsV0−rs)(x2−x1)

1−x2+x1eαsV0
, αs < 0,

ms =

{
1− x2 + x1e

αsV0 , αs > 0,
x2 − x1, αs < 0,

ns =

{
x2 − x1, αs > 0,
1− x2 + x1e

αsV0 , αs < 0.

Note that ms > 0 and ns > 0 for all s. We assume

mi

ni
+ e|αi|V 6= mj

nj
+ e|αj |V for i 6= j.

Otherwise, the corresponding two terms can be combined into a single term.
Using the substitution t = eV , one has

h(t) = g(V,V0) = d+

n∑
s=1

ws

ms + nst|αs|
.

Note |α1|, |α2|, . . . , |αn| are positive integers. For each fixed s, define

Ps =


0 . . . 0 −ms

ns

1
. . .

. . .
...

. . .
. . .

...
1 0


|αs|×|αs|

, e1 =


1
0
...
0

 , e|αs| =


0
...
0
1

 .

Then, for t > 0,

det(tI − Ps) = t|αs| +
ms

ns
,

and the (|αs|, 1)-entry of (tI − Ps)−1 is (det(tI − Ps))−1. Hence

ws
ns
eT|αs|(tI − Ps)

−1e1 =
ws

ms + nst|αs|
.
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Define

u =


w1
n1
e|α1|
...

wn
nn
e|αn|

 , v =

 e1
...
e1

 , P = diag (P1, . . . , Pn).

Then h(t) = d+ uT (tI − P )−1v. For the pencil

t

[
I 0
0 0

]
−
[
P v
uT d

]
=

[
tI − P −v
−uT −d

]
, (3.11)

one has[
I 0

uT (tI − P )−1 1

] [
tI − P −v
−uT −d

]
=

[
tI − P −v

0 −h(t)

]
.

Since tI − P is invertible for t > 0, one has h(t) = 0 if and only if

det

(
t

[
I 0
0 0

]
−
[
P v
uT d

])
= 0,

or equivalently, t is a positive zero of h(t) if and only if t is a positive
eigenvalue of the pencil (3.11). If d 6= 0, then[

I −1
dv

0 1

](
t

[
I 0
0 0

]
−
[
P v
uT d

])
=

[
tI − (P − vuT /d) 0

−uT −d

]
.

The eigenvalues of the pencil are just those of the matrix P − d−1vuT . Al-
though P, u, v have simple forms, it is still hard to detect whether the matrix
has a positive eigenvalue analytically. On the other hand, the eigenvalue for-
mulation provides a numerical tool for testing the existence of V∗ when the
values of the other parameters are given.

The above process is called a minimal realization, which is a fundamental
tool in systems and control theory [20, 33, 34]. Here it serves as a tool that
transforms the problem about zeros of a rational matrix function to the
eigenvalue problem of a matrix or matrix pencil.

4 Further specifics and more features

In this section, we will illustrate applications of equation (3.2) for more spe-
cific cases, provide a number of interesting features for reversal permanent
charges, and include a discussion on the results from physical considerations.

23



4.1 n = 2 with α1 > 0 > α2.

This might be Na+Cl−, K+Cl−, or Ca++Cl−2 . For this case, we are able to
give a precise condition for the existence of a reversal permanent charge and
will discuss an interesting feature.

4.1.1 A complete result on reversal permanent charges

Proposition 4.1. There exists a reversal permanent charge Q∗ if and only
if

(l1e
α1V0 − r1)(l2eα2V0 − r2) > 0. (4.1)

In this case, the reversal permanent charge Q∗ is unique.
The values of Q∗ and V∗ have the same sign that is determined as follows.

(i) If l2e
α2V0 − r2 > 0 and V0 > 0, then V∗ > V0 > 0 and Q∗ > 0;

(ii) If l1e
α1V0 − r1 > 0 and V0 < 0, then V∗ < V0 < 0 and Q∗ < 0;

(iii) If l1e
α1V0 − r1 < 0 and V0 > 0, then V∗ < 0 < V0 and Q∗ < 0;

(iv) If l2e
α2V0 − r2 < 0 and V0 < 0, then V∗ > 0 > V0 and Q∗ > 0.

In particular, V∗ lies outside of the interval between 0 and V0 but could be
on either side, and Q∗ always has the same sign as that of V∗.

Proof. Using the electroneutrality conditions α1l1 +α2l2 = α1r1 +α2r2 = 0,
equation (3.2) becomes χ(V ) = δ(r1/l1) where

χ(V ) =
1− x2 + x1e

α2V0 + (x2 − x1)eα2V

1− x2 + x1eα1V0 + (x2 − x1)eα1V
and δ(ρ) =

eα2V0 − ρ
eα1V0 − ρ

. (4.2)

The left hand side is positive. Thus, a necessary condition for the existence
of a real root of (3.2) is (l1e

α1V0 − r1)(l1eα2V0 − r1) > 0, or equivalently,

(l1e
α1V0 − r1)(l2eα2V0 − r2) > 0. (4.3)

The function χ(V ) is decreasing in V with the range (0,∞). Therefore,
the necessary condition (4.3) implies that (3.2) has a unique solution, which
leads to a reversal permanent charge Q∗.

For the statement on the signs of Q∗ and V∗, we demonstrate the proof
for (i). Under the conditions in (i), it can be verified directly that

χ(V0) =
1− x2 + x1e

α2V0 + (x2 − x1)eα2V0

1− x2 + x1eα1V0 + (x2 − x1)eα1V0 >
l1e

α2V0 − r1
l1eα1V0 − r1

= δ(r1/l1).
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Since χ(V ) is decreasing in V , we have V∗ > V0. Now, from (3.5),

Q∗ =α1(l1 − J1x1)
(
eα2(V0−V∗) − eα1(V0−V∗)

)
.

The right-hand-side is positive due to l1−J1x1 > 0 from (3.8), α1 > 0 > α2

and V∗ > V0. One concludes that Q∗ > 0.

We comment that case (i) and case (iv) are equivalent – one can be
obtained from the other by flipping the channel. Similarly, case (ii) and
case (iii) are equivalent.

Example 4.2. We provide a simple numerical study to illustrate our result.
Consider α1 = 2, α2 = −1, V0 = 0.1, l1 = 1, l2 = 2, r1 = r, r2 = 2r, x1 = 1/4
and x2 = 3/8. Recall, from (4.2), V = V∗ solves χ(V ) = δ(r) where

χ(V ) =
5 + 2e−1/10 + e−V

5 + 2e1/5 + e2V
and δ(r) =

e−1/10 − r
e1/5 − r

.
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Figure 2: Values of V∗ with different r in Example 4.2.

Figure 2 shows the graph of χ(V ) and the lines of δ(r) with r = 0, 0.5, 2,∞.
For r = 0.5 and 2, the corresponding values are given in Table 1.

Note when r increases from 0 to e−V0 , δ(r) decreases from e−3V0 to 0;
and when r increases from e2V0 to∞, δ(r) decreases from∞ to 1. For r ≥ 0,
δ(r) can not take any value in the interval (δ(0), 1).
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r1 = r V∗ Q∗ J1 J2
0.5 0.8482 3.356 0.4475 0.895
2 −1.324 −41.09 −0.829 −1.658

Table 1: Data in the first row correspond to case (i) in Proposition 4.1 and
second row to case (iii).

4.1.2 An interesting property of individual ion fluxes

In attempting to understand how the reversal permanent charge Q∗ affects
individual ion fluxes J1 and J2, an interesting feature was discovered that
may not be totally intuitive. Take the case (i) in Proposition 4.1 with α1 = 1
and α2 = −1 for example. To make the discussion easy to follow, we use
Jk(Q2) to denote the dependence of Jk on the value Q2 for the permanent
charge Q in (A3). In this case, l1 = l2 and r1 = r2. If r2 < e−V0 l2 (and
hence r1 < eV0 l1 as well), then J1(Q2) > 0 and J2(Q2) > 0 from (1.6). If
Q = 0, then I and V0 have the same sign; that is, I = J1(0) − J2(0) > 0
since V0 > 0. As Q2 increases from 0 to Q∗ > 0, one might suspect that the
ion flux J1(Q2) of the positively charged ions should tend to reduce while
the ion flux J2(Q2) should increase, and the value Q∗ > 0 would be the right
amount of positive charges to produce zero current. This is NOT true in
general. In fact, we have the following result.

Proposition 4.3. Consider n = 2 with α1 = 1 and α2 = −1 (so l1 = l2 = l
and r1 = r2 = r due to electroneutrality boundary conditions). Assume
r < e−V0 l and V0 > 0 (so that J1(0) > J2(0) > 0). For some choices of
parameters, one may have J1(0) > J2(0) > J1(Q

∗) = J2(Q
∗).

Proof. It is known (see, e.g. [1, 38]) that, for Q2 = 0,

J1(0) = (l − r)
(

1 +
V0

ln l − ln r

)
and J2(0) = (l − r)

(
1− V0

ln l − ln r

)
.

Therefore, J2(0) > J1(Q
∗) = J2(Q

∗) if and only if

(x2 − x1)eV
∗
>
leV0 − r
l − r

ln l − ln r

ln l − ln r − V0
− 1 + x2 − x1eV0 . (4.4)

It follows from (3.2) that V∗ satisfies

eV
∗

=
B +

√
B2 + 4(x2 − x1)2(le−V0 − r)(leV0 − r)

2(x2 − x1)(le−V0 − r)
,
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where B = ((1− x2)l + x1r)
(
eV0 − e−V0

)
.

For fixed V0, as l/r →∞, one has

eV
∗ → (1− x2)(e2V0 − 1) +

√
(1− x2)2(e2V0 − 1)2 + 4(x2 − x1)2e2V0

2(x2 − x1)
.

As l/r →∞, the right-hand-side of (4.4) approaches (1− x1)eV0 − 1 + x2.
Therefore, for any fixed x1 and x2 with 0 < x1 < x2 < 1, the inequality

(4.4) holds if V0 is large enough and l/r is large enough.

Example 4.4. In this example we consider

α1 = 1 = −α2; V0 = 2, l1 = l2 = 1, r1 = r2 = r; x1 = 1/4, x2 = 7/8

and vary r in [10−6, 0.1296] (0.1296 < e−2). The graphs of J1(0), J2(0),
and J1(Q

∗) = J2(Q
∗), which are considered as functions of r, are plotted in

Figure 3. For r < 0.0027, one has J2(0) > J1(Q
∗) = J2(Q

∗).
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Figure 3: Graphs of J1(0), J2(0), and J1(Q
∗) = J2(Q

∗) as functions of r.
The top curve is the graph of J1(0), the dashed curve is that of J2(0), and
the thin curve is that of J1(Q

∗) = J2(Q
∗).

4.2 n = 3 with α1 = 1, α2 = 2 and α3 = −1

This case might be for a mixture of Ca++Cl−2 and Na+Cl−.
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In this case, l1 + 2l2 − l3 = 0 and r1 + 2r2 − r3 = 0. We will show
it is possible that, for fixed V0, g(V,V0) has two real zeros, each leading
to a reversal permanent charge – a new feature that does not occur for ion
solutions with only two distinct valences.

Proposition 4.5. For appropriate choices of V0, lk’s and rk’s, g(V,V0) = 0
has at least two real roots.

Proof. The statement will be established by showing that, it is possible to
have g(−∞,V0) > 0, g(+∞,V0) > 0 and g(V1,V0) < 0 for some V1.

We first rewrite g(V,V0) as

g(V,V0) =
N − (x2 − x1)

(
2(r2 − l2e2V0)− (l1e

V0 − r1)eV
)
eV

(1− x2 + x1eV0 + (x2 − x1)eV )(1− x2 + x1e2V0 + (x2 − x1)e2V )

+
r1 + 2r2 − (l1 + 2l2)e

−V0

1− x2 + x1e−V0 + (x2 − x1)e−V
,

where

N =(l1e
V0 − r1)(1− x2 + x1e

2V0) + 2(l2e
2V0 − r2)(1− x2 + x1e

V0).

It is clear that g(−∞,V0) has the same sign as that of N .
We now fix V0 > 0 and choose (l1, r1) so that 0 < l1e

−V0 < r1 < l1e
V0 .

We will also fix l2. Next, we choose V1 to be determined later on so that

N = (x2 − x1)(l1eV0 − r1)e2V1 > 0;

in particular, g(−∞,V0) > 0. In view of the definition of N , we have

r2 = l2e
2V0 +

l1e
V0 − r1

2

1− x2 + x1e
2V0 − (x2 − x1)e2V1

1− x2 + x1eV0
. (4.5)

It is clear that there is a number M such that, if V1 < M , then

1− x2 + x1e
2V0 − (x2 − x1)e2V1 > 0,

and hence, r2 − l2e2V0 > 0, and

r3 − l3e−V0 = r1 + 2r2 − (l1 + 2l2)e
−V0 > 2r2 − 2l2e

2V0 > 0. (4.6)

In particular,

g(+∞,V0) = − l3e
−V0 − r3

1− x2 + x1e−V0
> 0.
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Note that

g(V1,V0) =
−(x2 − x1)

(
2(r2 − l2e2V0)− 2(l1e

V0 − r1)eV1
)
eV1

(1− x2 + x1eV0 + (x2 − x1)eV1)(1− x2 + x1e2V0 + (x2 − x1)e2V1)

+
r1 + 2r2 − (l1 + 2l2)e

−V0

1− x2 + x1e−V0 + (x2 − x1)e−V1
.

It follows from (4.5) and (4.6) that, as V1 → −∞,

r2 → l2e
2V0 +

l1e
V0 − r1

2

1− x2 + x1e
2V0

1− x2 + x1eV0
,

r3 → r1 + 2l2e
2V0 + (l1e

V0 − r1)
1− x2 + x1e

2V0

1− x2 + x1eV0
.

A direct calculation also gives, as V1 → −∞,

e−V1g(V1,V0)→ −
(x2 − x1)(l1eV0 − r1)

(1− x2 + x1eV0)2

(
1− (1− x2 + x1e

V0)(1− x2 + x1e
2V0)

(x2 − x1)2
)

+
1

x2 − x1
(
r1 − l1e−V0 + 2l2(e

2V0 − e−V0)
)
.

It is easy to see that, as (x1, x2) → (0, 1), the first term on the right-hand-
side approaches −∞ and the second term approaches a finite number. Thus
one can choose x1 and x2 so that the right-hand-side is strictly less than
zero. By continuity, if V1 is small enough, then g(V1,V0) < 0.

Example 4.6. We illustrate the result in Proposition 4.5 for a concrete set
of boundary conditions and locations for a permanent charge. We choose

V0 = 1/4, (l1, l2, l3) = (1, 1, 3), (r1, r2, r3) = (0.8, 1.91385, 4.62770),

x1 = 0.1 and x2 = 0.9. Note that electroneutrality conditions are satisfied.
Figure 4 shows the graph of g(V,V0) on interval [−8, −1]. The function

g(V,V0) is decreasing on (−∞, Vmin) and is increasing on (Vmin, ∞), and
has one minimum at a point Vmin ∈ (−3,−2). So g(V,V0) = 0 has exactly
two roots, which are V∗1 ≈ −3.4328 and V∗2 ≈ −1.6314.

Table 2 provides corresponding values of the reversal permanent charges
Q∗ and the ion fluxes. Since V∗1 < 0 < V0 and V∗2 < 0 < V0, Proposition 2.4
implies that the reversal permanent charge should be negative. Also, the
signs of Jk’s are determined by the boundary conditions and are consistent
with (1.6).
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Figure 4: Graph of g(V,V0) in Example 4.6.

V∗ Q∗ J1 J2 J3
−3.4328 −3509.028 1.9038 −0.99783 −0.091840
−1.6314 −99.138 1.2574 −0.89723 −0.53702

Table 2: First row correspond to V∗1 and second row to V∗2 in Example 4.6.

4.3 Physical discussion

Note that, for both cases (i) and (ii) in Proposition 4.1, the individual ion
fluxes J1 and J2 are positive due to (3.4) and (4.1). But the reversal per-
manent charges for these two cases have opposite signs. This indicates a
complex dependence of the ion current on the boundary conditions and
permanent charges. The result in Proposition 4.3 suggests another com-
plexity. The existence of possible multiple reversal permanent charges could
be thought of a certain version of instability of biological functions.

All these results are presented for the simple setting in this section and
already provide strong evidence for a very rich and complex phenomena
of electrodiffusion. Of course, extensive further studies should reveal more
important phenomena.

The complexity presented in these results reflect the physical essence
of the problem. The ion flux of each ion contains diffusion and migration
terms and these can have opposite signs depending on the size and sign of
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the gradients of electrical and chemical potential (e.g., concentration). It
is precisely the various combinations of these gradients that make possible
the rich behavior of semiconductor devices and (presumably) channels and
transporters. Engineers adjust parameters so that particular terms dominate
in particular parts of a transistor (e.g., the junctions between source and
gate or gate and drain in field effect transistors) and thus can combine to
produce particular characteristics of semiconductor devices. Evolution may
use similar tactics, but that has not yet been established.

5 Conclusion.

In this paper, we provide a mathematical analysis of qualitative properties
of cPNP models of ion channels. The specific questions about reversal po-
tentials and reversal charges studied in this paper are among the central
issues of biological functions. Based on the cPNP model with the equal dif-
fusion coefficients assumption and for a simple profile of permanent charges,
we are able to reduce the problem significantly to a single equation (3.2)
that involves only physical parameters of the biological problem. As an il-
lustration, a number of interesting properties are resulted from analyses of
this governing equation. The success of our care study relies heavily on a
recent advance of a general geometric singular perturbation framework and,
most importantly, some special structures of the cPNP models — the in-
tegrals in Proposition 2.1 for the nonlinear limiting fast system (2.6) and
the rescaling that converts the nonlinear limiting slow system (2.16) to a
linear system (2.17) or (2.18). (Strictly speaking, the linear system (2.18)
presents a nonlinear problem due to the dependence of the coefficient matrix
D on the unknown ion fluxes J . See [42] for a rather complete analysis of
system (2.18).) It is our belief that these special structures of the cPNP
model reflects some intrinsic properties of ionic flows of large number of
ions through ion channels. A better understanding of these macroscopic
structures deserves further extensive study.

The study in this paper as well as those analytical studies appeared in
recent literatures suggest that mathematical analysis can directly address
central issues of biological functions, assuming of course that the underlying
model of the ion channel is good enough. Extending, refining, and testing
the model are thus of great importance. The analysis also suggests that
qualitative properties of semiconductor systems could be analyzed in a sim-
ilar way, if this analysis is extended to include more complex geometries of
doping, that represent combinations of the junctions that define field effect
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and bipolar transistors.
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