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POISEUILLE FLOW OF NEMATIC LIQUID CRYSTALS VIA THE

FULL ERICKSEN-LESLIE MODEL

GENG CHEN, TAO HUANG, AND WEISHI LIU

Abstract. In this paper, we study the Cauchy problem of the Poiseuille flow of
the full Ericksen-Leslie model for nematic liquid crystals. The model is a coupled
system of a parabolic equation for the velocity and a quasilinear wave equation
for the director. For a particular choice of several physical parameter values,
we construct solutions with smooth initial data and finite energy that produce,
in finite time, cusp singularities – blowups of gradients. The formation of cusp
singularity is due to local interactions of wave-like characteristics of solutions,
which is different from the mechanism of finite time singularity formations for
the parabolic Ericksen-Leslie system. The finite time singularity formation for the
physical model might raise some concerns for purposes of applications. This is,
however, resolved satisfactorily; more precisely, we are able to establish the global
existence of weak solutions that are Hölder continuous and have bounded energy.
One major contribution of this paper is our identification of the effect of the flux
density of the velocity on the director and the reveal of a singularity cancellation
– the flux density remains bounded while its two components approach infinity
at formations of cusp singularities.
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1. Introduction

In this paper, we consider singularity formation and global existence of Hölder
continuous weak solution for the Cauchy problem

ut =(ux + θt)x,

θtt + 2θt =c(θ)(c(θ)θx)x − ux.
(1.1)

with initial data

u(x, 0) = u0(x) ∈ H1(R), θ(x, 0) = θ0(x) ∈ H1(R), θt(x, 0) = θ1(x) ∈ L2(R).
(1.2)

In addition, we assume that, for some α > 0,

u′0(x) + θ1(x) ∈ L∞ ∩ Cα(R) and lim
|x|→∞

(θ1, θ
′
0, u

′
0)(x) = 0. (1.3)

We also assume that the function c(·) is C2, and there exist positive constants
CL, CU and C1 such that,

0 < CL ≤ c(·) ≤ CU <∞, |c′(·)| ≤ C1. (1.4)

System (1.1) is the full Ericksen-Leslie model for Poiseuille flow of nematic liquid
crystals with a particular choice of parameters. The general model for Poiseuille
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flow of nematics and the choice of parameters that leads to system (1.1) will be
discussed in Section 2.1.

For system (1.1), we will show by a class of examples that (one-sided) cusp sin-
gularity can be formed in finite time and, taking this into consideration, we are
still able to establish the global existence of weak solutions with a bounded energy.
Although we do not work on the model for Poiseuille flow of nematics with general
parameters in this paper, we believe that the similar results hold true in general.

We will next recall the Ericksen-Leslie model followed by a discussion of some
relevant results to this work. Experts in this field can skip Section 1.1 and jump to
Section 1.2.

1.1. Ericksen-Leslie model for nematic liquid crystals. Liquid crystals are
intermediate phases between solid and isotropic fluid. Liquid crystal materials have
a degree of crystal structures but also exhibit many hydrodynamic features so they
are capable to flow. These multi-facet properties are very important to present ap-
plications of display and many yet to come. Nematic liquid crystals are composed
of rod-like molecules characterized by average alignment of the long axes of neigh-
boring molecules, which have simplest structures among liquid crystals and have
been widely studied analytically and experimentally that lead to fruitful applica-
tions ([10,14,15,27]). The modeling and analysis of the nematic liquid crystals have
attracted a lot of interests of mathematicians for several decades.

If the orientation order parameters of nematic materials are treated as a unit
vector n ∈ S

2, the director, then the Oseen-Frank energy density determines the
macrostructure of the crystal structure ([17,38])

2W (n,∇n) =K1(divn)
2 +K2(n · curln)2 +K3|n× curln|2

+ (K2 +K4)[tr(∇n)2 − (divn)2]
(1.5)

where Kj, j = 1, 2, 3, are the positive constants representing splay, twist, and bend
effects respectively, withK2 ≥ |K4|, 2K1 ≥ K2+K4. (One often takes K2+K4 = 0.)
The equilibrium theory of nematics is the variational problem of the total Oseen-
Frank energy over the domain Ω ⊂ R

3 occupied by the material. The theory has been
developed successfully and gives a wide range of interesting properties [19,33,36].

The hydrodynamic property of nematics is macroscopically characterized by the
velocity field u. Any distortion of the director n causes the flow and, likewise, any
flow affects the alignment n. These influences are determined by the the kinematic
transport tensor g and the viscous stress tensor σ given below. Let

D =
1

2
(∇u+∇Tu), ω =

1

2
(∇u−∇Tu), N = ṅ− ωn,

represent the rate of strain tensor, skew-symmetric part of the strain rate, and the
rigid rotation part of director changing rate by fluid vorticity, respectively. The
kinematic transport g is given by

g = γ1N + γ2Dn (1.6)

which represents the effect of the macroscopic flow field on the microscopic structure.
The material coefficients γ1 and γ2 reflect the molecular shape and the slippery part
between fluid and particles. The first term of g represents the rigid rotation of
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molecules, while the second term stands for the stretching of molecules by the flow.
The viscous (Leslie) stress tensor σ has the following form

σ =α1(n
TDn)n⊗ n+ α2N ⊗ n+ α3n⊗N

+ α4D + α5(Dn)⊗ n+ α6n⊗ (Dn),
(1.7)

where a ⊗ b = abT for column vectors a and b in R
n. These coefficients αj

(1 ≤ j ≤ 6), depending on material and temperature, are called Leslie coefficients.
The following relations are assumed in the literature.

γ1 = α3 − α2, γ2 = α6 − α5, α2 + α3 = α6 − α5. (1.8)

The first two relations are compatibility conditions, while the third relation is called
Parodi’s relation, derived from Onsager reciprocal relations expressing the equal-
ity of certain relations between flows and forces in thermodynamic systems out of
equilibrium (cf. [39]). They also satisfy the following empirical relations (p.13, [27])

α4 > 0, 2α1 + 3α4 + 2α5 + 2α6 > 0, γ1 = α3 − α2 > 0, (1.9)

2α4 + α5 + α6 > 0, 4γ1(2α4 + α5 + α6) > (α2 + α3 + γ2)
2.

Note that the 4th relation is implied by the 3rd together with the last relation and
the last can be rewritten as γ1(2α4 + α5 + α6) > γ22 .

The dynamic theory of nematics was first proposed by Ericksen [16] and Leslie

[26] in the 1960’s. Using the convention to denote ḟ = ft + u · ∇f the material
derivative, the full Ericksen-Leslie system is given as follows (see, e.g. [27, 31])



















ρu̇+∇P = ∇ · σ −∇ ·
(

∂W
∂∇n

⊗∇n
)

,

∇ · u = 0,

νn̈ = λn− ∂W
∂n − g +∇ ·

(

∂W
∂∇n

)

,

|n| = 1.

(1.10)

In (1.10), P is the pressure, λ is the Lagrangian multiplier of the constraint |n| = 1,
ρ is the density, ν is the inertial coefficient of the director n, W is the Oseen-Frank
energy in (1.5), g and σ are the kinematic transport and the viscous stress tensor,
respectively, given in (1.6) and (1.7).

1.2. Results relevant to present work. The full Ericksen-Leslie system (1.10)
is a coupled system of forced Navier-Stokes equations and the wave map equations.
Basic concerns about existence, uniqueness and regularity of solutions are not com-
pletely understood. In general, global regular solutions are not expected; in fact, in
several cases, singularity is shown to formulate in finite time for smooth initial data.
Therefore, singularity formation and global existence of weak solutions are often
treated in pair for dynamical models of liquid crystals from mathematical analysis
viewpoint. This is the case of this work.

1.2.1. On the variational wave equation for director field. When the fluid field u
is neglected, the Ericksen-Leslie system (1.10) is replaced by a quasilinear wave
system only on the director field n. (It is known that the neglect of u is not
physically consistent since a change of n in time would drive a change of u in time.)
In one spatial dimension x ∈ R and for director n(x, t) = (cos(θ(x, t)), 0, sin(θ(x, t))
restricted to a unit circle, the quasilinear wave system – the second equation in (1.1)
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without ux and the damping 2θt – is often called the variational wave equation and
was intensively studied in the last two decays (see for example [18]).

Solutions of the variational wave equation with smooth initial data could in gen-
eral produce cusp singularities due to local interactions of waves; more precisely,
there may be finite time blowup in their gradients while the solutions themselves
are still Hölder continuous ([11,13,18]). On the other hand, the existence of global
energy conservative solutions after the singularity formation was established in [6].
Later this result was extended to more general initial data in [20], the case with
damping in [13] and the variational wave system with n ∈ S

2 in [12, 43, 44]. Espe-
cially, in [13], the authors showed that behaviors of large solutions of the variational
wave systems with and without damping are similar. The global well-posedness of
Hölder continuous conservative solutions was established for the variational wave
system, including: uniqueness [3,8], Lipschitz continuous dependence on some opti-
mal transport metric [1], and generic regularity [2,5]. The existence of the dissipative
solution was studied in [4, 42].

The singularity formation of the variational wave equation is due to local inter-
actions of waves. This mechanism is different from that for the parabolic Ericksen-
Leslie models which will be discussed in the next part §1.2.2.

The singularity formation of the present work on system (1.1) is inspired by and
directly related to those for the variational wave equations discussed above. A major
difference is the coupling term ux on θ in the second equation of system (1.1). It
turns out ux blows up when singularity forms, which makes it hard to track its effect
on the singularity of θ from the variational wave equation. We are able to control
the effect of ux by controlling that of the quantity J(x, t) := ux + θt, and show that
the singularity formation for the coupled system (1.1) has more or less the same
mechanism as that for the variational wave equation.

Note that, from the first equation of system (1.1), the quantity J(x, t) := ux + θt
is the flux density of the velocity u. The flux density J(x, t) of the velocity further
plays a crucial role in establishing the existence of global weak solutions. For the
global existence result, we adapt the framework in [6] of using the semilinear system
on characteristic coordinates for the variational wave equation. For our problem
(1.1), however, in the heat equation, the solution flow does not propagate along
characteristic directions. One has to overcome the difficulty caused by the coupling
of “mismatching” behaviors. A key ingredient for extending the framework in [6]
to the coupled system (1.1) is a careful treatment of the flux density J(x, t) of the
velocity. In fact J(x, t) will be shown to be bounded (see Lemma 3.1), although ux
and θt both may blowup in finite time.

1.2.2. On the parabolic Ericksen-Leslie system. When ν = 0, the Ericksen-Leslie
system (1.10) becomes a parabolic system (also called Ericksen-Leslie system in lit-
erature). For the parabolic Ericksen-Leslie system in dimension two, the existence
and uniqueness of global solution have been studied in [21,22,28,40,41]. In dimen-
sion three, under some simplified assumptions, the authors of [41] established global
existence of solutions for small initial data and provided a characterization of the
maximal existence time for general initial data.
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In [31], Lin proposed a simplified system, by neglecting the Leslie stress and
taking W (n,∇n) to be the Dirichlet energy density











ut + u · ∇u−∆u+∇P = −∇ ·
(

∇n⊙∇n− 1
2 |∇n|2I3

)

∇ · u = 0

nt + u · ∇n = ∆n+ |∇n|2n.
(1.11)

For system (1.11) in dimension two, it was shown in [32, 35] that there is a unique
Leray-Hopf type global weak solution. This weak solution may have at most finitely
many singular times, at which |u| + |∇n| → ∞. Very recently, examples of finite
time singularities of such weak solution have been constructed in [25] by a new
inner-outer gluing method. More precisely, given any k points in the domain of
dimension two, the local smooth solution blows up exactly at those k points at
finite time. In dimension three, existence of global weak solutions has been shown
in [34] under the assumption n0(x) ∈ S

2
+ with the help of some new compactness

arguments. In [23], for system (1.11) over a bounded domain, two examples of
finite time singularity have been constructed. The formations of these singularities
are related to some global or non-trivial topological conditions on the initial data
(over bounded domains); in particular, the mechanisms are different from that for
variational wave equation discussed in the previous part §1.2.1 and our system (1.1)
(see Section 1.3 for more details). It is not clear how the singularity will behave
after its formation, which is presumably one of the main difficulties in establishing
a global existence result.

Although system (1.11) misses specifics of many physical parameters, the simpli-
fication allows initial success in analyzing the general dynamical behavior of such a
system that further drives a great deal treatments of the parabolic Ericksen-Leslie
system. For a more complete review, please see the survey paper [36] and the refer-
ences therein.

1.2.3. On the full Ericksen-Leslie system (1.10). The full Ericksen-Leslie system
(1.10) itself is poorly understood. It seems to the authors that the only result
available for the global wellposedness is in [24] where local existence and uniqueness
for initial data with finite energy and global existence and uniqueness of classical
solutions with small initial data were established.

1.3. Main results of this work. An interesting and important question is the
existence and behaviors of global solutions for the full Ericksen-Leslie system (1.10)
with ν > 0. In this paper, we give an example of singularity formation and establish
the global existence of weak solutions for the special Poiseuille flow (1.1).

Finite time singularity formation. Inspired by [11,13,18], we can construct some
special smooth initial data for which the solution will produce singularity of gradient
blow-up in finite time. To this end, we introduce a C1(R) function φ satisfying the
following properties

φ(0) = 0 and φ(a) = 0 for a 6∈ (−1, 1), (1.12)

− φ′(0) > max
{ 16CU

c′(θ∗)CL
,
2

CL

}

, |φ′(x)| ≤ C2 (1.13)
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where CL and CU are defined in (1.4), C2 is a positive constant and
∫ 1

−1
(φ′)2(a) da < k0, (1.14)

for some constant k0.

Theorem 1. Consider the Cauchy problem of (1.1)-(1.4) with the following C1

initial data

θ0(x) = θ∗ + ε φ(
x

ε
), θ1(x) = (−c(θ0(x)) + ε) θ′0(x) (1.15)

u0(x) =



























0, x ∈ (−∞,−ε),
∫ x

−ε
c(θ0(a)) θ

′
0(a) da, x ∈ [−ε, ε]

Φ(x), x ∈ (ε, ε+ 2),
0, x ∈ (ε+ 2,∞),

(1.16)

where θ∗ is a constant satisfying c′(θ∗) > 0, φ(x) is the function satisfying (1.12)-
(1.14), and Φ(x) is C1 and satisfies

Φ(ε) =

∫ ε

−ε
c(θ0(a)) θ

′
0(a) da, Φ′(ε) = c(θ0(ε))θ

′
0(ε) = 0, (1.17)

Φ(ε+ 2) = Φ′(ε+ 2) = 0, |Φ′(x)| ≤ 6CUC2ε for any x ∈ (ε, ε + 2) (1.18)

Then, one can choose ε > 0 sufficiently small, such that the solution (u(x, t), θ(x, t))
is C1 only for t < t∗ with some t∗ < 1 and forms singularity as t → t−∗ ; more pre-
cisely, at some x∗,

θt(x, t) → ∞, θx(x, t) → −∞, ux(x, t) → −∞
as (x, t) → (x∗, t

−
∗ ).

We comment that the requirement on Φ in (1.17) and (1.18) is consistent; in fact
one can construct a function Φ with all properties and with the factor 6 in (1.18)
being replaced by any number bigger than 4.

Together with the energy decay for smooth solutions, we know that the singularity
formed in finite time is a cusp (generically one-sided-cusp) singularity, i.e. deriva-
tives |θx| and |θt| are infinity (see [18]), but the L2 norms of |θx| and |θt| are finite by
Proposition 2.1, which gives Hölder continuity of θ. The estimate on J = ux + θt in
Lemma 3.1 and the relation ux = J − θt show that u(·, t) is also Hölder continuous
for almost all t. See Remark 4.1 for more details.

As mentioned in Section 1.2, the two examples of finite time singularity formation
constructed in [23, 25] for the parabolic system over bounded regions are directly
related to or caused by some non-trivial global/topological conditions. While as the
singularity claimed in Theorem 1 is formed in essentially the same mechanism as
that in [13, 18] – it is created locally due to interactions of local waves that are of
finite speed. A typical point singularity of direction field n of three dimensional
parabolic system is in the form of x/|x|, which is not continuous at singular point.
In fact, if (u,n) is continuous, one may show higher regularity of the solutions to
parabolic system.

Our method of showing the formation of singularity is thus based on those in
papers [11, 13, 18] for a variational wave equation while there are several new ideas
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provided to cope with the new model. For example, we need understand the impact
of the source term ux in (1.1)2.

Global existence of weak solutions. Due to the formation of singularity in The-
orem 1, one cannot expect existence of global classical solutions in general. One
would like to know how the singularity behaves and whether a certain class of weak
solutions exist beyond the time of singularity formation. This is important particu-
larly for models of physical problems that are expected to have “global solutions”.
We will show that a weak solution defined below does exist globally and has a
bounded energy.

Definition 1.1. For any given time T < ∞, (u(x, t), θ(x, t)) is a weak solution to
the initial value problem (1.1)-(1.3) for (x, t) ∈ R× [0, T ] if

(i) for any φ ∈ C∞
0 {R× [0, T ]},

∫∫

(θtφt − (c(θ)φ)xc(θ)θx − θtφ− vtφ) dxdt = 0 (1.19)

with

v(x, t) =

∫ x

−∞
u(y, t)dy, and vx(x, t) = u(x, t) (1.20)

pointwise with

vt(x, t) ∈ L∞ ∩ L2(R× [0, T ])

and

vt = vxx + θt

is satisfied in L2(R × [0, T ]) sense, and

u ∈ L2([0, T ],H1(R)) ∩ L∞([0, T ],H1
loc(R)) ∩ L∞([0, T ] × R),

and

ut ∈ L2([0, T ],H−1(R)).

(ii) the first and second equations for initial conditions in (1.2) are satisfied
pointwise, and the third equation holds in Lp

loc for p ∈ [1, 2).

Theorem 2. Assume c(θ) satisfies (1.4) and θ0 is absolutely continuous. Then,
for any time T < ∞, there exists a weak solution (u(x, t), θ(x, t)) in the sense
of Definition 1.1 for (x, t) ∈ R × [0, T ] to the initial value problem (1.1)-(1.3).
Furthermore,

(i) the associated energy

E(t) := 1

2

∫

R

(

θ2t + c2(θ)θ2x + u2
)

dx (1.21)

is well-defined for t ∈ (0, T ] and satisfies

E(t) ≤ E(0) −
∫∫

R×[0,t]
(v2t + θ2t ) dxdt;

(ii) θ(x, t) is locally Hölder continuous with exponent 1/2 in both x and t;
(iii) u(x, t) is locally Hölder continuous in x with exponent 1/2 for a.e. t.
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Note that the statement of Theorem 2 involves an arbitrary but fixed time T <∞.
The reason is that we do not have uniqueness on weak solutions. Thus, in principle,
for different T , one may have different weak solutions with the same initial data
that make it difficult to get the conclusion for (x, t) ∈ R× [0,∞). Of course, we do
not believe neither suggest the latter is the case.

A main challenge in establishing a global existence comes from the coupling of
quasilinear wave equation (1.1)2 and heat equation (1.1)1. To solve the quasilinear
wave equation (1.1)2 without 2θt and ux for general initial data, one of few avail-
able frameworks is to use a semilinear system on some dependent variables in the
energy dependent characteristic coordinates introduced in [6]. However, in the heat
equation (1.1)1, the solution flow does not propagate along characteristic directions,
so it destroys the sharp wave front. Here the source term θtx(·, t) in (1.1)1 has a
poor regularity, only H−1, since θt(·, t) ∈ L2 for any t. So the solution cannot gain
any regularity directly from the heat equation (1.1)1. As mentioned in §1.2.1, a
key ingredient for extending the framework in [6] to our coupled system is a careful
treatment of the flux density J(x, t) = ux + θt of the velocity.

The remaining of the paper is organized as follows. In Section 2, we discuss the
model for Poiseuille flows of nematics, specify the choice of parameters that leads
to system (1.1) considered in this paper, and explain main ideas for the proofs of
our results. In Section 3, we give the a priori estimate on the flux density J(x, t) of
the velocity for smooth solutions. In Section 4, we construct a singularity formation
example. In Section 5, a semilinear system for the wave equation will be given.
In Section 6, we prove the existence of weak solutions and the energy estimate.
In Appendix A, we provide a brief derivation of (2.1) for the Poiseuille flows of
nematics, a derivation of the semilinear system in the characteristic coordinates
used in Section 6, and a proof of the Hölder continuity of some functions used in
Section 6.3.

2. Poiseuille flows, special system (1.1), ideas of our analysis

2.1. System for Poiseuille flows and energy decay for smooth solutions.
In this paper, we are interested in Poiseuille flows of nematic liquid crystals; more
precisely, we will consider solutions of system (1.10) of the form ([9])

u(x, t) = (0, 0, u(x, t))T and n(x, t) =
(

sin θ(x, t), 0, cos θ(x, t)
)T
.

Then system (1.10) becomes (see Appendix A.1 for a detailed derivation)

ρut =a+
(

g(θ)ux + h(θ)θt

)

x
,

νθtt + γ1θt =c(θ)(c(θ)θx)x − h(θ)ux,
(2.1)

where the constant a is the gradient of pressure along the flow direction, and

g(θ) :=α1 sin
2 θ cos2 θ +

α5 − α2

2
sin2 θ +

α3 + α6

2
cos2 θ +

α4

2
,

f(θ) ≡c2(θ) := K1 cos
2 θ +K3 sin

2 θ,

h(θ) :=α3 cos
2 θ − α2 sin

2 θ =
γ1 + γ2 cos(2θ)

2
.

(2.2)

The last relation comes from (1.8). Note that c(·) is smooth and satisfies (1.4).
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For system (2.1), we will take a = 0 in the sequel. In fact, once one finds a weak
solution (u, θ) for (2.1) without a, then (û = u+ a

ρ t, θ) will satisfy system (2.1) with

a. For any smooth solution of the system (2.1), we define the associated energy

E(t) := 1

2

∫

R

(

νθ2t + c2(θ)θ2x + ρu2
)

dx. (2.3)

Let b(θ) be the function given by

b(θ) := g(θ)− 1

γ1
h2(θ) =

γ1(2α4 + α5 + α6)− γ22
4γ1

cos2(2θ) +
α4

8
sin2(2θ)

+
2α1 + 3α4 + 2α5 + 2α6

8
sin2(2θ).

(2.4)

Then b(θ) > 0 is an immediate consequence of (1.8) and (1.9).

Proposition 2.1. If (u(x, t), θ(x, t)) is a smooth solution of the Poiseuille flow (2.1)
with a = 0, then the associated energy E(t) decays; more precisely,

d

dt
E(t) = −

∫

R

(

b(θ)u2x + γ1

(

θt +
h(θ)

γ1
ux

)2)

dx ≤ 0, (2.5)

where b(θ) > 0 is given in (2.4).

Proof. Recall, with a = 0, the system (2.1) becomes
{

ρut = (g(θ)ux + h(θ)θt)x ,

νθtt + γ1θt = c(θ)
(

c(θ)θx
)

x
− h(θ)ux.

(2.6)

Multiplying the first equation of (2.6) by u and the second equation of (2.6) by θt,
and integrating by parts, we have

ρ

2

d

dt

∫

u2 dx = −
∫

g(θ)u2x dx−
∫

h(θ)θtux dx, (2.7)

and

1

2

d

dt

∫

(

νθ2t + c2(θ)θ2x
)

dx =−
∫

γ1θ
2
t dx−

∫

h(θ)uxθt dx. (2.8)

Sum up (2.7) and (2.8) to get

1

2

d

dt

∫

(

νθ2t + c2(θ)θ2x + ρu2
)

dx =−
∫

(

γ1θ
2
t + 2h(θ)θtux + g(θ)u2x

)

dx

=−
∫

R

(

b(θ)u2x + γ1
(

θt +
1

γ1
h(θ)ux

)2
)

dx,

where b(θ) = g(θ)− h(θ)/γ1 > 0 is given in (2.4). This completes the proof. �

The term −h(θ)ux in the second equation of system (2.1) could blow up (see
Theorem 1), and hence, is hard to control directly. In view of the special structures
of the system, we will introduce new state and time variables.

We first make the following rescaling of time variable,

ũ(x, t) = u(x,
√
νt) and θ̃(x, t) = θ(x,

√
νt).
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Then, system (2.1) becomes

ρ√
ν
ũt =

(

g(θ̃)ũx +
1√
ν
h(θ̃)θ̃t

)

x
,

θ̃tt +
γ1√
ν
θ̃t =c(θ̃)(c(θ̃)θ̃x)x − h(θ̃)ũx.

(2.9)

We then introduce a state variable

ṽ(x, t) =

∫ x

−∞
ρũ(z, t)dz.

Then, ṽt =
√
νg(θ̃)ũx + h(θ̃)θ̃t. One has

ρ√
ν
ṽt =g(θ̃)ṽxx +

ρ√
ν
h(θ̃)θ̃t,

θ̃tt +
1√
ν

(

γ1 −
h2(θ̃)

g(θ̃)

)

θ̃t =c(θ̃)(c(θ̃)θ̃x)x −
h(θ̃)

√
νg(θ̃)

ṽt.
(2.10)

We emphasize that the relation

γ1 −
h2(θ)

g(θ)
= γ1

b(θ)

g(θ)
> 0 (2.11)

holds where b(θ) > 0 is defined in (2.4) and it gives a damping in (2.10)2.
It turns out that the term

ṽt =
√
νg(θ̃)ũx + h(θ̃)θ̃t =: J̃ ,

which is the flux density of the velocity from (2.9)1, captures the interaction be-

tween u and θ well – one has a good control on the L∞ norm of J̃ . For smooth
solutions, this is proved in Lemma 3.1. It is much more involved to control the L∞

norm of J̃ for weak solutions. In replacing ũx in (2.9)2 with ṽt in (2.10)2, we need

some contribution from the damping term γ1θ̃t/
√
ν in (2.9). The feature that some

damping is kept in (2.10)2 due to (2.11) is crucial in the proof of global existence of
weak solutions. See Lemma 6.2 in Section 6.

2.2. A special choice of parameters leading to system (1.1). As mentioned
in the introduction, we consider a special case of Poiseuille flows (2.1) in this paper;
more precisely, we take

a = 0, ρ = ν = 1, α1 = α5 = α6 = 0, α2 = −1, α3 = α4 = 1, γ1 = 2.

By the Onsager-Parodi relation (1.8), one has

γ2 = α6 − α5 = α2 + α3 = 0,

and hence, g(θ) = h(θ) = 1. System (2.1) is then reduced to (1.1)
This special case keeps the the main structure of (2.1) while the heat equation

(2.1)1 is simplified to one with constant coefficients, i.e. g(θ) = h(θ) = 1. We do
believe that similar singularity formation and global existence results in this paper
hold true for (2.1).

In terms of the variable (v, θ), where

v(x, t) =

∫ x

−∞
u(z, t)dz, and hence, vt = ux + θt, (2.12)



WAVE MODEL FOR LIQUID-CRYSTALS 11

system (1.1) reads

vt =vxx + θt,

θtt + θt =c(θ)(c(θ)θx)x − vt.
(2.13)

We remind the readers that the damping term θt in the second equation is not
due to the special choice of the parameters but the intrinsic property of the problem
discussed immediately after display (2.10).

For system (1.1), the energy introduced in (2.3) simplifies to (1.21), which, for
smooth solutions, satisfies

d

dt
E(t) = −

∫

R

(1

2
v2xx + 2

(

θt +
1

2
vxx

)2)

dx = −
∫

R

(v2t + θ2t ) dx.

The latter shows our result in statement (i) of Theorem 2 on energy estimates for
weak solutions is sharp.

2.3. Main ideas of proofs. One of key contributions of this paper is the identifi-
cation of the crucial quantity

J := vt = ux + θt,

where v(x, t) =
∫ x
−∞ u(z, t) dz introduced in (2.12).

For any time T , it will be shown that J(x, t) is defined for (x, t) ∈ R× [0, T ] and
has finite L2, L∞ and Cα norms, with α ∈ (0, 1/4). Given the fact that both ux
and θt may blow up (Theorem 1), the bound and regularity of J are fundamentally
important. It will be seen that the result is indeed critical for both singularity
formation and global existence. Roughly speaking, this result holds because of the
different “scales” of time variable t in heat equation and in wave equation. To
understand it, one can first look at Lemma 3.1 that gives a bound on J associated
with smooth solutions.

In our construction of the example with cusp formation, we adapt the framework
in [11, 13] to our coupled system. For smooth solutions from our construction, the
bound of J can be carefully estimated using the initial energy using Lemma 3.1.
Especially, such a bound is small when u0 and E(0) are both small, although θt(x, 0)
and θx(x, 0) might be large near the point of singularity formation. In this case,
the compressive effect from the quasilinear wave equation dominates the dissipative
effect from the heat equation and leads to a cusp singularity in finite time.

The global existence part is much more complicated. In the first step, for a given
bounded, square integrable and Hölder continuous function J , we replace vt with J
in equation (2.13)2 and solve for θ = θJ(x, t). Instead of considering the problem
directly in the (x, t) coordinates, we start the analysis from an equivalent semilinear
system in the characteristic coordinates and, afterward, we transform back to the
(x, t) coordinates. This framework was used in [6] for variational wave equation.

Here we mention two differences from this paper to [6]. First, due to the low
regularity of J(x, t), we use Schauder fixed point theorem to prove the existence
of solution on characteristic coordinates. Secondly, since there is no direct way to
control two key dependent variables p and q, which measure the dilation of the
transformation, by the semilinear system, a great deal of extra efforts are made in
finding the a priori bounds on p and q using the relation (2.11) which works even
for the general case. In fact, by (2.11), we know the nematic liquid crystal model



12 GENG CHEN, TAO HUANG, AND WEISHI LIU

naturally gives us some “leftover” damping after we change from (1.1)2 to (2.13)2,
and such a “leftover” damping term plays a crucial role in bounding p and q. See
Lemma 6.2 for this key estimate.

In the second step, using the heat equation (2.13)1, with θ(x, t) = θJ(x, t), we

solve for v = vJ(x, t). This allows us to define a map J → vJt . A fixed point of this
map using the Schauder Fixed-Point Theorem gives the existence.

To show the energy decay, we need to conquer the “mismatch” between the semi-
linear system in characteristic coordinates and the heat equation.

3. Estimates on J = vt for smooth solutions

In this section, we derive some estimates on J = vt for any smooth solution of
(2.13). Recall from (2.12)-(2.13) that

v(x, t) =

∫ x

−∞
u(z, t) dz and vt = vxx + θt = ux + θt. (3.1)

Lemma 3.1. If (v, θ) is a smooth solution of system (2.13) for t ∈ [0, T ), one has,
for any t ∈ [0, T ),

‖vt‖L∞(R×(0,t)) ≤‖u′0(x) + θ1(x)‖L∞(R)

+ Ct
1
4
(

‖θt‖L∞((0,t),L2(R)) + ‖θx‖L∞((0,t),L2(R))

)

+ Ct
1
4

(

‖θx‖2L∞((0,t),L2(R)) + t
1
4‖u‖L∞(R×(0,t))

)

,

(3.2)

and

‖u‖L∞(R×(0,t)) = ‖vx‖L∞(R×(0,t)) ≤ ‖u0‖L∞(R) + Ct
1
4 ‖θt‖L∞((0,t),L2(R)). (3.3)

Proof. Recall that

H(x, t) =
1√
4πt

exp

{

−x
2

4t

}

(3.4)

is the fundamental solution of 1D heat equation, that is,

Ht −Hxx = 0, for (x, t) ∈ R× (0,∞)

with H(x, 0) = δ0(x) being the Dirac function at x = 0.
We decompose

v(x, t) = l(x, t) + k(x, t) (3.5)

where l(x, t) and k(x, t) satisfy, respectively,
{

lt = lxx + θt,
l(x, 0) = 0,

(3.6)

and






kt = kxx,

k(x, 0) =

∫ x

−∞
u0(y) dy := k0(x).

(3.7)

By the Duhamel formula, one has

l(x, t) =

∫ t

0

∫

R

H(x− y, t− s)θs(y, s) dyds =

∫ t

0

∫

R

H(x− y, s)θs(y, t− s) dyds,
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and

k(x, t) =

∫

R

H(x− y, t)k0(y) dy

= k0(x) +

∫ t

0

∫

R

H(x− y, t− s)
(

k0
)

yy
(y) dyds

= k0(x) +

∫ t

0

∫

R

H(x− y, s)
(

k0
)

yy
(y) dyds.

(3.8)

Direct calculation implies

|lx(x, t)|

≤C
∫ t

0

∫

R

|x− y|
(t− s)3/2

exp

(

−(x− y)2

4(t− s)

)

|θs(y, s)| dyds

≤C
(
∫ t

0

∫

R

|x− y|2
(t− s)3/2+3/4

exp

(

−(x− y)2

2(t− s)

)

dyds

)

1
2

·
(
∫ t

0

∫

R

|θs(y, s)|2
(t− s)3/4

dyds

)

1
2

≤C‖θt‖L∞((0,T ),L2(R))

∫ t

0

1

(t− s)3/4
ds ≤ Ct

1
4‖θt‖L∞((0,T ),L2(R)).

(3.9)

On the other hand, one can show

|kx(x, t)| =
∣

∣

∣

∣

∫

R

H(y, t)u0(x− y) dy

∣

∣

∣

∣

≤ ‖u0‖L∞(R), (3.10)

which combining with (3.9) implies (3.3).

To obtain the estimate of vt, by the definition of k and l, we have

vt =lt + kt

=
d

dt

∫ t

0

∫

R

H(x− y, s)θs(y, t− s) dyds +
d

dt

∫ t

0

∫

R

H(x− y, s)k′′0(y) dyds

=

∫

R

H(x− y, t)
(

θ1(y) + u′0(y)
)

dy +

∫ t

0

∫

R

H(x− y, s)θst(y, t− s) dyds

=

∫

R

H(x− y, t)
(

θ1(y) + u′0(y)
)

dy −
∫ t

0

∫

R

H(x− y, s)θss(y, t− s) dyds.

The first term can be estimated as follows

∣

∣

∣

∣

∫

R

H(x− y, t)
(

θ1(y) + u′0(y)
)

dy

∣

∣

∣

∣

≤ ‖u′0(x) + θ1(x)‖L∞(R)). (3.11)
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By (2.13)2, we can rewrite the second term as
∫ t

0

∫

R

H(x− y, s)θss(y, t− s) dyds

=

∫ t

0

∫

R

H(x− y, s)
[

− 2θs + c(θ)(c(θ)θy)y − uy
]

(y, t− s) dyds

=

∫ t

0

∫

R

H(x− y, s)
[

− 2θs − c′(θ)c(θ)θ2y
]

(y, t− s) dyds

+

∫ t

0

∫

R

Hy(x− y, s)
[

c2(θ)θy − u
]

(y, t− s) dyds.

(3.12)

Similarly to (3.9), one can show that
∣

∣

∣

∣

∫ t

0

∫

R

H(x− y, s)θss(y, t− s) dyds

∣

∣

∣

∣

≤ Ct
1
4
(

‖θt‖L∞((0,t),L2(R)) + ‖θx‖L∞((0,t),L2(R))

)

+ Ct
1
4

(

‖θx‖2L∞((0,t),L2(R)) + t
1
4 ‖u‖L∞(R×(0,t))

)

.

(3.13)

Note in (3.12), we use the different “scales” of time variable t in heat equation
and in wave equation. Heuristically, we use the wave equation to change H ∗ θtt to
H ∗ θxx and other lower order terms. This helps us bound the term in (3.12) that
leads to the bound of J .

Combining (3.11) and (3.13), one has (3.2). �

By the energy decay proved in Proposition 2.1

E(t) ≤ E0 for any 0 ≤ t ≤ T,

and also using Lemma 3.1, we know that there exists a constant Ĵ(T ) depending
only on ‖u′0‖L2(R), E0 and T , such that,

max
(x,t)∈R×[0,T ]

|J(x, t)| < Ĵ(T ). (3.14)

From the proof of Lemma 3.1,

u(x, t) =

∫

R

H(x− y, t)u0(y) dy +

∫ t

0

∫

R

Hx(x− y, t− s)θs(y, s) dyds. (3.15)

One then has

J(x, t) =

∫

R

H(x− y, t)
(

u′0(y) + θ1(y)
)

dy

+

∫ t

0

∫

R

H(x− y, t− s)
[

2θs + c′(θ)c(θ)θ2y
]

(y, s) dyds

−
∫ t

0

∫

R

Hy(x− y, t− s)
[

c2(θ)θy − u
]

(y, s) dyds.

(3.16)

These two relations will be used in Section 6.3 where we prove the global existence of
weak solutions. In fact, the main step in the proof of existence is to find a fixed point
of a map M(J), constructed by using (3.15) and (3.16), for J in L∞∩L2. By (3.14)
and (3.1), one can easily see why we use the sup-norm space and square integrable
function space, respectively. Secondly, the estimate on vt = J in Lemma 3.1 and
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the energy decay will give us the key estimate on J for the singularity formation in
the next section.

4. Singularity formation

This section is devoted to a proof of Theorem 1 for the singularity formation. We
extend the framework for the variational wave equation in [13, 18] to the coupled
system (1.1). The main difference is that there is a nonlocal source term J in the
second equation of (1.1). The estimate on J in Lemma 3.1 is thus the major new
ingredient for our construction.

The proof of Theorem 1 is split into several steps. We will show that, if ε is small
enough, then the singularity will appear before t = 1. Thus all estimates below are
for solutions over 0 ≤ t < 1.

Step 1. For any smooth solution (u(x, t), θ(x, t)) of (1.1), set

S := θt − c(θ)θx, R := θt + c(θ)θx. (4.1)

It follows from (1.1)2 that

St + c(θ)Sx =
c′(θ)

4c(θ)
(S2 −R2)− (R+ S)− ux,

Rt − c(θ)Rx =
c′(θ)

4c(θ)
(R2 − S2)− (R+ S)− ux,

(4.2)

or, with J = vt = ux + θt as in the previous section,

St + c(θ)Sx =
c′(θ)

4c(θ)
(S2 −R2)− 1

2
(R + S)− J, (4.3)

Rt − c(θ)Rx =
c′(θ)

4c(θ)
(R2 − S2)− 1

2
(R + S)− J. (4.4)

It is then easy to have
(

R2 + S2
)

t
+
(

c(θ)(S2 −R2)
)

x
= −(S +R)2 − 2(S +R)J. (4.5)

Step 2. From the initial condition (1.15) set for Theorem 1, one has

θx(x, 0) = φ′(
x

ε
), R(x, 0) = ε φ′(

x

ε
), S(x, 0) =

(

− 2c(θ(x, 0)) + ε
)

φ′(
x

ε
). (4.6)

We always choose 0 < ε < CL and ε ≪ 1. Here recall from (1.4) that the uniform
lower and upper bounds of the function c are CL and CU , respectively. So by (1.13),

S(0, 0) = (−2c(θ∗) + ε)φ′(0) > max

{

16CU

c′(θ∗)
, 2

}

. (4.7)

We now define a function E as

E(t) ≡ E(θ(·, t)) =
∫ ∞

−∞
(θ2t + c2θ2x)(x, t) dx =

1

2

∫ ∞

−∞
(R2 + S2)(x, t) dx. (4.8)
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For smooth solutions, by the energy decay proved in Proposition 2.1, and properties
in (1.14)-(1.18), we have

E(t) ≤2E(t) ≤ 2E(0) = 1

2

∫ ∞

−∞
(R2 + S2 + 2u2)(x, 0) dx

=
1

2

∫ ∞

−∞

[

(−2 c(θ(x, 0)) + ε)2 + ε2
] (

φ′(
x

ε
)
)2
dx+KC2

UC
2
2ε

2 ≤ O(ε),

(4.9)

where K is some constant, and ε is any sufficiently small constant. It then follows
from Lemma 3.1, (1.15)-(1.18) and (4.9) that there exists a constant k1 independent
of ε such that,

‖J‖L∞(R×(0,t)) ≤ k1
√
ε for 0 ≤ t ≤ 1. (4.10)

t

x

x x x

(x ,t )

x x

1

1 0 2

+ -

0 0

Figure 1. Characteristic triangle Ω

Step 3. Next we consider any characteristic triangle Ω in Figure 1 bounded by the
x-axis together with the characteristic curves x±(t) (or t±(x)) given by

dx±(t)

dt
= ±c(θ) ≤ CU , or equivalently,

dt±(x)

dx
= ± 1

c(θ)
.

It is easy to see that, for any (x0, t0) with t0 < 1,

|x2 − x1| < 2CU . (4.11)

Integrating (4.5) over Ω and applying the divergence theorem, we have,

∫ x0

x1

R2(x, t+(x)) dx+

∫ x2

x0

S2(x, t−(x)) dx =
1

2

∫ x2

x1

(

R2(x, 0) + S2(x, 0)
)

dx

+
1

2

∫∫

Ω
(S +R)2 dx dt+

∫∫

Ω
(S +R)J dx dt.
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Using (4.9), (4.10) and (4.11), one has, for ε small,
∫ x0

x1

R2(x, t+(x)) dx +

∫ x2

x0

S2(x, t−(x)) dx

≤ 1

2

∫ x2

x1

[

R2(x, 0) + S2(x, 0)
]

dx+

∫ t0

0

∫ x+(t)

x−(t)
(S2 +R2) dx dt

+

∫∫

Ω
(|S|+ |R|)|J | dx dt

< 12C2
Uk0ε+ k1

√
ε

∫ t

0

∫ x+(t)

x−(t)
(|S|+ |R|) dx dt

< 12C2
Uk0ε+ k1

√
ε(2CU )

1
2 (4C2

Uk0ε)
1
2 = k2ε

(4.12)

where k2 = 12k0C
2
U + 2

√
2k0k1C

3
2
U .

Step 4. Consider now the forward characteristic piece x = Γ(t) for t ∈ [0, 1] starting
from the origin, that is,

dΓ(t)

dt
= c
(

θ
(

Γ(t), t
)

)

, Γ(0) = 0.

We will show the singularity formation by tracking S(t) ≡ S(Γ(t), t) along Γ.
We know that

dθ(Γ(t), t)

dt
= R(Γ(t), t).

Integrate this equation and use (4.12) to have

|θ(Γ(t), t)− θ(Γ(0), 0)| = |
∫ t

0
R(Γ(t), t) dt| ≤

√
t

√

∫ t

0
R2(Γ(t), t) dt

≤
√

∫ x

x0

R2(x, t(x))
1

c
dx ≤

√

1

CL

∫ x

x0

R2(x, t(x)) dx ≤
√

k2
CL

ε,

where without confusion we use t(x) to denote the characteristic Γ(t). Recall that
c is C2. Thus, if ε is small enough, one has

c′(θ(Γ(t), t)) >
c′(θ(Γ(0), 0))

2
=
c′(θ∗)

2
> 0. (4.13)

We claim that before time t = 1, if there is no break down of classical solution,
then S(Γ(t), t) > 1. This will be proved by contradiction. Suppose that t∗ is the
first time such that

S(Γ(t∗), t∗) = 1, (4.14)

while
S(Γ(t), t)) > 1 for 0 < t < t∗ ≤ 1. (4.15)

Now we only consider Γ(t) with 0 < t < t∗ ≤ 1. Set S̃ = e
1
2
tS. By (4.3), we have

S̃t + cS̃x =
c′

4c
e−

1
2
tS̃2 − c′

4c
e

1
2
tR2 − 1

2
e

1
2
tR− e

1
2
tJ.

Along the characteristic Γ(t), we have

d

dt
S̃ ≥ c′

4c
e−

1
2
tS̃2 − c′

4c
e

1
2
tR2 − 1

2
e

1
2
t|R| − e

1
2
t|J |.
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Divide the above by S̃2 and integrate to get

1

S̃(t∗)
≤ 1

S̃(0)
− c′(θ∗)

8CU
t∗ +

∫ t∗

0

1

S̃2

{

c′

4c
e

1
2
tR2 +

1

2
e

1
2
t|R|+ e

1
2
t|J |
}

dt

≤ min{c
′(θ∗)

16CU
,
1

2
} − c′(θ∗)

8CU
t∗ + k3

√
ε,

(4.16)

for some positive constant k3 independent of ε because of (4.12), (4.15) and (4.10),

where we also use (4.13) and (4.7). If ε is small enough, one has S̃(t∗) > e
1
2 , and

hence, S(t∗) > 1, which contradicts to (4.14).
Hence, if there is no blowup before t = 1, then S(Γ(t), t)) > 1 for 0 < t < 1.

Step 5. Finally, we prove the breakdown of the solution. By the same calculation
as in (4.16),

1

S̃(t)
≤ c′(θ∗)

16CU
− c′(θ∗)

8CU
t+ k3

√
ε.

Therefore S̃(t) → ∞ will occur no later than the time when the right-hand side is
zero or

t =
1

2
+

8CUk3
c′(θ∗)

√
ε < 1,

where the inequality holds when ε is small enough. This completes the proof of
Theorem 1.

θ

X

.

θ

X

. .

θ

X

.

Figure 2. The first picture illustrates a one-sided cusp proved in
Theorem 1. The third picture illustrates a full cusp singularity.

We close this section with a remark on why the singularity is a cusp singularity.
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Remark 4.1. By (4.6), we know that the maximum initial value of |R(x, 0)| is of
O(ε) order. It is easy to get that R will be bounded above in any O(1) time by
studying the Riccati equation (4.2)2 and using c′ > 0 which can be proved similarly
as (4.13) when ε is small enough. Thus, at the point of blowup, one has

S = θt − cθx = ∞, |R| = |θt + cθx| < constant,

which imply that θt = ∞ and θx = −∞. The singularity is typically one-sided cusp.
For carefully designed initial data, two opposite one-sided cusps might occur at the
same time and the same location to form a full cusp. See Figure 2.

Together with the energy decay for smooth solutions, we know that the singularity
formed in finite time is a cusp singularity with derivatives |θx| and |θt| being infinity,
but the L2 norms of which are finite. Hence θ is Hölder continuous with exponent
1/2. By the estimate on vt in Lemma 3.1 and ux = vt−θx, we also know that u(·, t)
is Hölder continuous with exponent 1/2 before and at the blowup.

5. A semilinear system in characteristic coordinates

As commented in Section 1.3 on the approach for global existence result, we will
rewrite system (2.13) into a semilinear system in characteristic coordinates.

For any smooth solution (u(x, t), θ(x, t)) of (1.1), the equations of the character-
istics are

dx±(s)

ds
= ±c

(

θ(x±(s), s)
)

, (5.1)

where, at time s,

x±(s) ≡ x±(s; x, t)

denote the forward and backward characteristics passing through the point (x, t),
respectively. Using the variables

S := θt − c(θ)θx, R := θt + c(θ)θx,

defined in (4.1), we introduce new coordinates (X,Y ) by

X ≡ X(x, t) :=

∫ x−(0; x, t)

1
(1 +R2(x′, 0)) dx′,

Y ≡ Y (x, t) :=

∫ 1

x+(0; x, t)
(1 + S2(x′, 0)) dx′.

(5.2)

It is easy to check that X and Y are constants along backward and forward charac-
teristic, respectively; that is,

Xt − c(θ)Xx = 0 and Yt + c(θ)Yx = 0. (5.3)

Here we use 1+R2 and 1+S2 as the integrands in (5.2) just for later convenience in
assigning the boundary data. One could choose other nonzero integrable functions
as the integrands. For any smooth function f , it follows from (5.2) that

{

ft + c(θ)fx = fX (Xt + c(θ)Xx) + fY (Yt + c(θ)Yx) = 2cXxfX ,
ft − c(θ)fx = fX (Xt − c(θ)Xx) + fY (Yt − c(θ)Yx) = −2cYxfY .

(5.4)

In order to complete the system, we introduce several variables:

w = 2arctanR, z = 2arctan S, (5.5)
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and

p =
1 +R2

Xx
, q =

1 + S2

−Yx
. (5.6)

Furthermore, set f = x and f = t in two equations in (5.4) to get






c = 2cXxxX ,

−c = −2cYxxY ,







1 = 2cXxtX ,

1 = −2cYxtY .
(5.7)

Using (5.5) and (5.6), it holds


















xX =
1

2Xx
=

1 + cosw

4
p,

xY =
1

2Yx
= −1 + cos z

4
q,



















tX =
1

2cXx
=

1 + cosw

4c
p,

tY = − 1

2cYx
=

1 + cos z

4c
q.

(5.8)

Then system (2.13) can be written as follows.

θX =
sinw

4c
p, θY =

sin z

4c
q,

zX =
p

4c

{c′

c
(cos2

w

2
− cos2

z

2
)− sinw cos2

z

2
− sin z cos2

w

2
− 4J cos2

z

2
cos2

w

2

}

,

wY =
q

4c

{c′

c
(cos2

z

2
− cos2

w

2
)− sinw cos2

z

2
− sin z cos2

w

2
− 4J cos2

z

2
cos2

w

2

}

,

pY =
pq

2c

{ c′

4c
(sin z − sinw)− 1

4
sinw sin z − sin2

w

2
cos2

z

2
− J sinw cos2

z

2

}

,

qX =
pq

2c

{ c′

4c
(sinw − sin z)− 1

4
sinw sin z − sin2

z

2
cos2

w

2
− J sin z cos2

w

2

}

(5.9)

where, recalling that,

J = ux + θt = ux +
S +R

2
. (5.10)

A derivation of the semilinear system (5.9)-(5.10) is given in Appendix A.2. It is a
special case of system (A.10) that is derived from (2.1).

Remark 5.1. We observe that the new system is invariant under translation by 2π
in w and z. Actually, it would be more precise to work with the variables ŵ = eiw

and ẑ = eiz. However, for simplicity we shall use the variables w, z, keeping in
mind that they range on the unit circle [−π, π] with endpoints identified.

6. Global existence and energy decay

In this section, we prove the global existence and energy decay in Theorem 2.
Here by global existence, we mean that, for any T > 0, there exists a solution for
t ∈ [0, T ].

We will work on system (2.13) and accomplish the proof of Theorem 2 in three
steps. First, for any fixed J , we solve for θ = θJ of the wave equation (2.13)2 with
vt replaced by J . Then, in the second step, substituting θJ into (2.13)1 and solving

for v = vJ , we obtain a map from J to M(J) := vJt , which is basically (3.15)-(3.16),
and then show this map has a fixed point, for a small time interval. Finally, we
prove the energy decay and extend the local existence result to a global one.
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Since we will use the Schauder fixed point theorem, we cannot achieve uniqueness
in this paper. As a consequence, the solutions obtained for t ∈ [0, T1] and for
t ∈ [0, T2] with T2 > T1 might not agree with each other for t ∈ [0, T1]. Hence we
cannot claim an existence result for t ∈ [0,∞). The uniqueness for the variational
wave equation was proved in [3]. So this might be a very interesting technique issue
which, hopefully, could be conquered later, although the method in this paper fails
to give a uniqueness.

6.1. Existence result for the wave equation with any given J. In this sub-
section, we first prove the existence of a weak solution for

θtt + θt = c(θ)(c(θ)θx)x − J(x, t) (6.1)

where J(x, t) is given for any (x, t) ∈ R× R
+, with

‖J‖Cα∩L∞∩L2(ΩT ) =: J̄(T ) <∞, (6.2)

where

ΩT = {(x, t) |x ∈ R, t ∈ [0, T ]}
for any T ≥ 0. We fix an arbitrary time T > 0, and only prove the existence of
solution in t ∈ [0, T ]. The equation (6.1) comes from (2.13)2 with vt replaced by J .

In the rest of paper, we always assume that α is a constant such that

0 < α <
1

4
.

By the initial condition (1.3), there exist xa and xb, such that, θ1(x), θ
′
0(x) and

J(x, 0) = u′0(x) + θ1(x) are small enough for x 6∈ (xa, xb), particularly, if Ω
a and

Ωb are domains of dependence with bases (−∞, xa] and [xb,∞), respectively, then
solutions over Ωa and Ωb will not blow up before time T .

In fact, because J is in Cα ∩ L2 ∩ L∞ with J(±∞, 0) = 0, for any ε > 0, when
xa and xb have sufficiently large magnitudes, |J(x, t)| < ε for any x < xa or x > xb
and 0 ≤ t ≤ T . Hence, one can find a priori bounds on gradient variables R and S
using equations (4.3)-(4.4) and the initial smallness of R and S. The existence and
uniqueness for C1 solutions in domains of dependence Ωa and Ωb is a classical result
(see [29, 30] together with equations (4.3)-(4.4)). One can also use the semilinear
equation method to find this unique solution. Note, when T increases, |xa| and |xb|
may increase.

The solution of (6.1) has a finite speed of propagation, so we can split the region
ΩT into different domains of dependence. As described in Figure 3 and its caption,
now we only have to consider a characteristic triangle Ω0, which, together with Ωa

and Ωb, covers ΩT .
Due to the assumption (1.4) that the wave speed c has positive lower and upper

bounds, a time T0, whose definition is clear from Figure 3, is finite.

6.1.1. Setup of the boundary value problem over Ω0 in the (X,Y )-coordinates. Now
we only have to consider the region Ω0 in Figure 3.

The key idea is to first construct the solution of semilinear system (5.9) then
change it back to the original system. This idea was used for the variational wave
equation in [6]. The appearance of the source term J in our equation makes the
existence proof harder than that in [6]. In fact, we do not have uniform a priori
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Figure 3. Left: Ωa and Ωb are domains of dependence corresponding
to x < xa and x > xb, respectively. When −xa and xb are sufficiently
large, there will be no gradient blowup in Ωa and Ωb before t = T .
Ω0 is another characteristic triangle, which covers ΩT together with
Ωa and Ωb. Right: region Ω0 on the (X,Y )-plane.

estimates for p and q by directly using the semi-linear system (5.9) in the (X,Y )-
plane. Instead, we first establish the local existence for solutions in the (X,Y )-
coordinates then transform it to the (x, t)-coordinates. Next, we will prove the key
Lemma 6.2, in which the L∞ estimates for p and q are given. This helps extend the
solution to t ∈ [0, T ].

Now we start from the boundary value problem on Ω0 in the (X,Y )-plane. The
system for this boundary value problem is given in (6.1) with J(x, t) given and
satisfying (6.2).

The initial line t = 0 in the (x, t)-plane is transformed to a parametric curve

Γ0 :=
{

(X,Y ) : Y = ϕ(X)
}

⊂ R
2 (6.3)

in the (X,Y )-plane, where Y = ϕ(X) if and only if there is x such that

X =

∫ x

0
[1 +R2(y, 0)] dy and Y =

∫ 0

x
[1 + S2(y, 0)] dy. (6.4)

The curve Γ0 is non-characteristic. The two functionsX = X(x), Y = Y (x) are well-
defined and absolutely continuous. So ϕ(X) is continuous and strictly decreasing
in X since X(x) is strictly increasing while Y (x) is strictly decreasing. From (1.2),
(1.21) and (4.1), it follows

∣

∣X + ϕ(X)
∣

∣ ≤ 4E(0) <∞ . (6.5)

As (x, t) ranges over the domain Ω0, the corresponding variable (X,Y ) ranges over
the set enclosed by one vertical line, one horizontal line and Γ0, see Figure 3. With-
out loss of generality, we still use Ω0 to denote this region in the (X,Y )-plane.

Along the initial curve Γ0 in (6.3) parametrized by x 7→
(

X(x), Y (x)
)

using

(6.4), we can thus assign the boundary data θ̄, z̄, w̄ ∈ L∞ by their definitions in
(5.5) evaluated at the initial data, and p̄ = 1 and q̄ = 1 by (5.6), where we also used
(1.2). Therefore, it is easy to check that

∫

Γ0

1− cos w̄

4
dX − 1− cos z̄

4
dY ≤ 2E(0).
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Finally, we denote

D = Distance between two vertices of Ω0 on Γ0. (6.6)

Since the wave speed c has positive lower and upper bounds, clearly, D is a constant
depending only on the initial condition.

6.1.2. Local existence of the boundary value problem in (X,Y ) coordinates. Now we
first show a local existence result, by finding a fixed point of the map

(θ̂, ŵ, ẑ, p̂, q̂) = T1(θ,w, z, p, q)
defined by the solution of (5.9), more precisely,

θ̂(X,Y ) = θ(X,φ(X)) +

∫ Y

φ(X)

sin z

4c
q(X, Ȳ )dȲ , (6.7)

ẑ(X,Y ) =z(φ−1(Y ), Y ) +

∫ X

φ−1(Y )
p
{ c′

4c2
(cos2

w

2
− cos2

z

2
)

− 1

4c
(sinw cos2

z

2
+ sin z cos2

w

2
)− 1

c
J(xp, tp) cos

2 z

2
cos2

w

2

}

(X̄, Y )dX̄,

(6.8)

ŵ(X,Y ) =w(X,φ(X)) +

∫ Y

φ(X)
q
{ c′

4c2
(cos2

z

2
− cos2

w

2
)

− 1

4c
(sinw cos2

z

2
+ sin z cos2

w

2
)− 1

c
J(xm, tm) cos2

z

2
cos2

w

2

}

(X, Ȳ )dȲ ,

(6.9)

p̂(X,Y ) =p(X,φ(X)) +

∫ Y

φ(X)
pq

{

c′

8c2
(sin z − sinw)

− 1

2c
[
1

4
sinw sin z + sin2

w

2
cos2

z

2
]− 1

2c
J(xm, tm) sinw cos2

z

2

}

(X, Ȳ )dȲ ,

(6.10)

q̂(X,Y ) =q(φ−1(Y ), Y ) +

∫ X

φ−1(Y )
pq

{

c′

8c2
(sinw − sin z)

− 1

2c
[
1

4
sinw sin z + sin2

z

2
cos2

w

2
]− 1

2c
J(xp, tp) sin z cos

2 w

2

}

(X̄, Y )dX̄,

(6.11)

where

xp(X̄, Y ) = x(X̄, φ(X̄)) +

∫ Y

φ(X̄)
−1 + cos z

4
qdỸ , (6.12)

tp(X̄, Y ) = t(X̄, φ(X̄)) +

∫ Y

φ(X̄)

1 + cos z

4c
qdỸ , (6.13)

xm(X, Ȳ ) = x(φ−1(Ȳ ), Ȳ ) +

∫ X

φ−1(Ȳ )
−1 + cosw

4
pdX̃, (6.14)

and

tm(X, Ȳ ) = t(φ−1(Ȳ ), Ȳ ) +

∫ X

φ−1(Ȳ )
−1 + cosw

4c
pdX̃. (6.15)



24 GENG CHEN, TAO HUANG, AND WEISHI LIU

Note that (xp, tp) and (xm, tm) come from different but equivalent equations
in (5.8). More importantly, such a choice makes sure that (xp, tp)(X̄, Y ) and
(xm, tm)(X, Ȳ ) have finite partial derivative in Y and X, respectively.

For brief, we set

V = (θ,w, z, p, q) and V̂ = (θ̂, ŵ, ẑ, p̂, q̂),

and let

V̄ (X) = (θ,w, z, p, q)(X,φ(X))

denote the initial data.
Fix a constant K1 large to be determined later on (say K1 ≫ 2‖V̄ (X)‖Cα∩L∞).

Define the set

K1 =
{

V
∣

∣ ‖V (X,Y )‖Cα∩L∞(Ω̂δ)
≤ K1, V (X,φ(X)) = V̄ (X)

}

(6.16)

where δ > 0 is a constant and

Ω̂δ =
{

(X,Y ) ∈ Ω0 : dist((X,Y ),Γ0) ≤ δ
}

. (6.17)

Note that the space K1 is compact in C0(Ω̂δ), where Ω̂δ is a two dimensional
bounded connected region. We will apply the Schauder Fixed-Point Theorem to
show that, there exists δ > 0, such that, the map T1 has a fixed point in the set K1.

The proof is standard and we will check the conditions for the theorem briefly.
For any local solution, when δ is small enough, it is easy to find uniform a priori

bounds on p and q by corresponding equations in (5.9). We omit details here because
we will later give much stronger global a priori bounds on p and q, which will allow
us to extend the solution to a global one.

Since K1 is a compact set in C0(Ω̂δ) space, it suffices to show that the map T1 is
continuous under C0 norm and maps K1 to itself.

It follows directly from (6.7)-(6.11) that the map T1 is continuous since J(x, t)
is continuous in x and t, and that T1(V )(X,φ(X)) = V (X,φ(X)). Now recall that
J(x, t) is Hölder continuous in x and t, and (xp, tp)(X̄, Y ) and (xm, tm)(X, Ȳ ) have
finite partial derivatives with respect to Y and X. By (6.7)-(6.11), if δ is small
enough, T1 maps K1 to itself. For example, p̂Y is bounded, so p̂ is Lipschitz in the
Y direction. In the X direction, the Cα norm of p̂ is different from the Cα norm of
p(X,φ(X)) by Cδ times ‖V ‖Cα∩L∞ for some constant C, where we use J(xm, tm)
is Hölder in (xm, tm), and (xm, tm) is Lipschitz in the X direction.

So, we claim that there is a fixed point for the map T1 in K1.
Note that δ depends on K1 while K1 can be determined by the a priori bound

on ‖V (X,Y )‖Cα∩L∞(Ω0). Later, in Lemma 6.2, we provide the a priori bounds on p

and q in Ω0, by the map T1, and then we can find the Cα bound on V as we just
discussed. Clearly, the L∞ bound on V is finite. So K1 will be given by a constant
only depending on the initial data V̄ . As a consequence, δ is fixed with respect to
K1. This allows one to apply the same procedure to extend the solution to Ω0.

Remark 6.1. The equations of θX and θY are equivalent since it is easy to check that
θXY = θY X , as in [6]. The semilinear system (5.9) are invariant under translation
by 2π in w and z. It would be more precise to work with the variables eiw and eiz.
For simplicity, we shall use the variables w and z keeping in mind that they range
on the unit circle [−π, π] with endpoints identified.
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6.1.3. Inverse transformation. Now we can carry out the inverse transformation
from the (X,Y )-coordinate to the (x, t)-coordinate. This step is very similar to the
one in [6]. Let’s only briefly introduce the key steps for completeness.

For convenience, we recall (5.8) below


















xX =
1

2Xx
=

1 + cosw

4
p,

xY =
1

2Yx
= −1 + cos z

4
q,



















tX =
1

2cXx
=

1 + cosw

4c
p,

tY = − 1

2cYx
=

1 + cos z

4c
q.

(6.18)

It is easy to check that

tXY = tY X , xXY = xY X

using (6.18) and (5.9), so two t equations and two x equations in (6.18) are equiva-
lent, respectively. Hence, by (6.12)-(6.15),

(xm, tm) = (xp, tp) =: (x, t)

And, (6.18) provides an inverse transformation from the (X,Y )-coordinates to the
(x, t)-coordinates.

Next, we note that the map from (X,Y ) to (x, t) may not be one-to-one, since
(tX , xX) and (tY , xY ) might vanish as singularity forms. But, if

x(X1, Y1) = x(X2, Y2), t(X1, Y1) = t(X2, Y2),

then

θ(x(X1, Y1), t(X1, Y1)) = θ(x(X2, Y2), t(X2, Y2)),

and hence, the function θ(x, t) is well defined and

dx dt =
pq

2c(1 +R2)(1 + S2)
dX dY =

pq

2c
cos2

w

2
cos2

z

2
dX dY. (6.19)

We omit the proof here and refer the readers to [6] for more details.

6.1.4. Global existence of (5.9). Now we extend the local solution of (5.9) estab-
lished in Section 6.1.2 to ΩT . As we discussed, we only need some global a priori
bounds on p and q, which will be given in the next key lemma.

Lemma 6.2. Consider any solution of (5.9) constructed in the local existence result
up to the region Ω0. Then, we have

0 < A1 ≤ max
(X,Y )∈Ω0

{p(X,Y ), q(X,Y )} ≤ A2, (6.20)

for some constants A1 and A2 specified in the proof.

Proof. We consider a characteristic triangle Σ in Ω0 enclosed by the line segment
between (X,Y ) and (X,ϕ(X)), the line segment between (X,Y ) and (ϕ−1(Y ), Y ),
and Γ0. See Figure 4. If we denote equations of p and q in (5.9) as

qX = Apq, pY = Bpq,
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Figure 4. The domain Σ.

then p and q are positive since p = q = 1 on Γ0. Furthermore, direct computation
using (5.9) gives

∫

∂Σ
p dX̄ − q dȲ =−

∫∫

Σ
qX + pY dX̄dȲ

=

∫∫

Σ

pq

2c
(sin

w

2
cos

z

2
+ sin

z

2
cos

w

2
)2 dX̄dȲ

+

∫∫

Σ

pq

2c
J(sin z cos2

w

2
+ sinw cos2

z

2
) dX̄dȲ .

Thus, using p = q = 1 on Γ0 again,
∫ X

ϕ−1(Y )
p(X̄, Y ) dX̄ +

∫ Y

ϕ(X)
q(X, Ȳ ) dȲ

= X − ϕ−1(Y ) + Y − ϕ(X) −
∫∫

Σ

pq

2c
(sin

w

2
cos

z

2
+ sin

z

2
cos

w

2
)2 dXdY

−
∫∫

Σ

pq

2c
J(sin z cos2

w

2
+ sinw cos2

z

2
) dXdY (6.21)

= X − ϕ−1(Y ) + Y − ϕ(X) −
∫∫

Σ

pq

2c
(tan

w

2
+ tan

z

2
)2 cos2

z

2
cos2

w

2
dXdY

−
∫∫

Σ

pq

2c
2J(tan

w

2
+ tan

z

2
) cos2

z

2
cos2

w

2
dXdY

≤ X − ϕ−1(Y ) + Y − ϕ(X) +

∫∫

Σ

pq

2c
|J |2 cos2 z

2
cos2

w

2
dXdY

≤ X − ϕ−1(Y ) + Y − ϕ(X) +

∫∫

Σ̃
|J |2 dxdt

≤ 2D + J̄(T ) (6.22)

where we use (6.2), (6.6) and (6.19) in the last step. The constant J̄(T ) is defined

in (6.2). Here Σ̃ denotes the characteristic triangle in the (x, t) plane transformed
from Σ.
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It then follows from pY = Bpq that

p(X,Y ) ≤ e
sup |B|

∫ Y
φ(X) q(X,Y ′) dY ′

< esup |B| (2D+J̄(T )),

where sup |B| also depending on J̄(T ).
The other bounds in (6.20) can be found similarly. �

6.1.5. Global existence for the wave equation. Finally, we show that θ(x, t) is a weak
solution for the wave equation (6.1) in the (x, t)-plane for 0 ≤ t ≤ T , i.e. on ΩT .

We can prove the local Hölder continuity of θ in both x and t with exponent
1/2 by showing that the integrals of (θt + c(θ)θx)

2 and (θt − c(θ)θx)
2 along forward

and backward characteristics, respectively, are bounded. Then using the Sobolev
embedding from H1 to C1/2. Note we also use the property on wave speed c in
(1.4). This also shows that all characteristic curves are C1 with Hölder continuous
derivative. Finally, one can show that

∫∫

Ω0

(θtφt − (c(θ)φ)xc(θ)θx − θtφ− Jφ) dxdt = 0 (6.23)

for any test function φ on Ω0. Applying this on the overlap domain Ωa∩Ω0 or Ωb∩Ω0,
and by the uniqueness of C1 solution on Ωa and Ωb, we can glue solutions found on
three regions Ωa, Ωb and Ω0 to get a solution θ(x, t) for (6.1), when t ∈ [0, T ], in the
weak sense of

∫ T

0

∫

R

(θtφt − (c(θ)φ)xc(θ)θx − θtφ− Jφ) dxdt = 0 (6.24)

for φ ∈ C∞
0 {(x, t) ∈ R× [0, T ]}. Since the proofs of these results are very similar to

those in [6], we refer the readers to [6] for details.
Finally, for this part, we will prove that

E(t) =

∫ ∞

−∞
(θ2t + c2(θ)θ2x)(x, t)dx < CE (6.25)

for a constant CE depending on E(0) and J , where E(t) is first given in (4.8).
For any τ ≥ 0, let Γτ ⊂ Ω+ be the transformation of the horizontal line t = τ

in the (x, t)-plane. We first consider the bounded domain Dt in the (X,Y )-plane in

0

Y

X

Γ0
A

B

C

D

Γt

Figure 5. The domain Dt is enclosed by four curves with vertices A,B,C,D.



28 GENG CHEN, TAO HUANG, AND WEISHI LIU

Figure 5, where Dt is enclosed by two curves AB and CD with

AB ⊂ Γt ∩ ∂Dt, CD ⊂ Γ0 ∩ ∂Dt (6.26)

and two straight line-segments BC and DA. Here we denote four vertices in (x, t)
coordinates as

A = (a, t), B = (b, t), C = (c, 0), D = (d, 0) (6.27)

for some a < b and d < c, respectively.
By Green’s theorem,

∫

∂Dt

1− cosw

4
p dX − 1− cos z

4
q dY

= −1

4

∫∫

Dt

[

((1− cos z)q)X + ((1 − cosw)p)Y
]

dXdY.

(6.28)

Direct computation from (5.9) gives

((1 − cos z)q)X + ((1− cosw)p)Y

= −pq
c
(sin

w

2
cos

z

2
+ sin

z

2
cos

w

2
)2 − pq

c
J(sin z cos2

w

2
+ sinw cos2

z

2
).

(6.29)

Substituting it into (6.28), and using the transformation relation in (5.8), the fol-
lowing inequality holds, where curves AB and DC have starting points A, D and
ending points B, C, respectively.
∫ b

a
(θ2t + c2(θ)θ2x)(x, t) dx

=

∫

AB∩(cosw 6=−1)

1− cosw

4
p dX +

∫

BA∩(cos z 6=−1)

1− cos z

4
q dY

≤
∫

AB

1− cosw

4
p dX − 1− cos z

4
q dY

=

∫

DC

1− cosw

4
p dX − 1− cos z

4
q dY −

∫

DA

1− cosw

4
p dX

−
∫

CB

1− cos z

4
q dY − 1

4

∫∫

Dt

pq

c
(sin

w

2
cos

z

2
+ sin

z

2
cos

w

2
)2 dXdY

− 1

4

∫∫

Dt

pq

c
J(sin z cos2

w

2
+ sinw cos2

z

2
) dXdY

≤
∫

DC

1− cosw

4
p dX − 1− cos z

4
q dY − 2

∫∫

D
θ2t dxdt− 2

∫∫

D
Jθt dxdt

=

∫ c

d
(θ2t + c2(θ)θ2x)(x, 0) dx − 2

∫∫

D
θ2t dxdt− 2

∫∫

D
Jθt dxdt,

(6.30)

where we have used the following fact in the second last step:
∣

∣

∣

∣

∂(X,Y )

∂(x, t)

∣

∣

∣

∣

=

∣

∣

∣

∣

Xx Xt

Yx Yt

∣

∣

∣

∣

= −2cXxYx =
8

pq

1

1 + cosw

1

1 + cos z
,

and D is the region in the (x, t)-plane transformed from Dt. The last equal sign
holds since there exists no energy concentration initially using θ0(x) is absolutely
continuous.
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If we let (a, b) goes to (−∞,∞), then by (6.30) we have, for any 0 ≤ t ≤ T ,

E(t) ≤ E(0) + 4

∫ t

0

∫ ∞

−∞
|J ||θt| dxdt,

and hence,

1

2
max
0≤t≤T

E(t) ≤ E(0) + 4Cε

∫ T

0

∫ ∞

−∞
|J |2 dxdt

for some constant Cε and C. This gives (6.25), and implies that θt(·, t) and θx(·, t)
are both square integrable functions in x, so do R and S.

In summarize, we have

Lemma 6.3. Fix any T > 0 and any function J(x, t) satisfying (6.2) over ΩT .
If the same assumptions on initial conditions in Theorem 2 hold, then there exists
a weak solution of (6.1) over ΩT with bounded energy E(t) < CE for some CE

depending on E(0) and J .

6.2. A map from J(x, t) to J(X,Y ). Using similar method as in Lemmas 1
and 2 in [3] for variational wave equation (i.e. (6.1) with J ≡ 0), we can show
that the uniqueness of forward and backward characteristics for equation (6.1),
i.e. the uniqueness of the (X,Y ) coordinates. Hence (xm(X,Y ), tm(X,Y )) =
(xp(X,Y ), tp(X,Y )) is unique. As a consequence, for any given J(x, t) ∈ Cα ∩
L2 ∩ L∞, solution we found previously satisfies the semilinear system (5.9) with a

unique source term J̃(X,Y ) = J(x(X,Y ), t(X,Y )).

Clearly J̃(X,Y ) is L∞. In fact, for any given J̃(X,Y ) ∈ L∞, the semilinear
system (5.9) has a unique solution obtained as the fixed point of a contract mapping
in a weighted L∞ space, in the same way as the proof in [2]. As a consequence,
we know that the solution (x, t, θ, w, z, p, q)(X,Y ) of the semilinear system (5.9) is
continuously dependent on J in the L∞ space, due to the uniform bounds on p and
q and the relation (5.8). The proof is straightforward and we omit the detail.

Remark 6.4. The main idea in [3] for the variational wave equation is to find some
Lipschitz weighted distance between any two characteristics. This distance essen-
tially measures the forward and backward energy between two characteristics. The
Lipschitz property protects the uniqueness of characteristics. By adding J(x, t) ∈
Cα∩L2∩L∞, there will be some new lower order terms −2SJ and −2RJ in the en-
ergy balance laws (A.8). This will not cause any problem since S,R, J are all in L2.
The appearance of damping term never makes trouble here. Since this uniqueness
result can be shown in a very similar way as in [3], we omit the proof here.

Remark 6.5. The (X,Y )-coordinates system is ideal for the wave equation but it
is not the case for the heat equation. The original (x, t)-coordinates system works
better for the heat equation. So we run our proof mainly in the (x, t)-coordinates
system and use the continuous dependence of solution on J in the (X,Y )-coordinates
system.

From J(x, t) to J̃(X,Y ), there is actually an unfolding process when singularity
forms, i.e. when characteristics tangentially touch each other.

6.3. A fixed point argument for a map on J. Recall that, for any given function
J(x, t) ∈ (Cα∩L∞∩L2)(ΩT ), there exists a weak solution θ(x, t) = θJ(x, t) of (6.1).
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Using relations (3.16) and (3.15), we define a function M(J) on ΩT as follows

M(J)(x, t) =

∫

R

H(x− y, t)
(

u′0(y) + θ1(y)
)

dy

+

∫ t

0

∫

R

H(x− y, t− s)
[

2θs + c′(θ)c(θ)(θy)
2
]

(y, s) dyds

−
∫ t

0

∫

R

Hy(x− y, t− s)
[

c2(θ)θy − u
]

(y, s) dyds

(6.31)

for t ∈ [0, T ] and

u(x, t) =

∫

R

H(x− y, t)u0(y) dy +

∫ t

0

∫

R

Hx(x− y, t− s)θs(y, s) dyds. (6.32)

This gives a map

T : J(x, t) → M(J)(x, t) (6.33)

on Cα ∩ L∞ ∩ L2(ΩT ).
Initially, we define a set K as follows: for some constants δ and K,

K =
{

J(x, t)
∣

∣ ‖J(x, t)− J0(x, t)‖Cα∩L∞∩L2(Ωδ) ≤ K, J(x, 0) = θ1(x) + u′0(x)
}

(6.34)
where

J0(x, t) =

∫

R

H(x− y, t)
(

u′0(y) + θ1(y)
)

dy

and

Ωδ = {(x, t) |x ∈ R, t ∈ [0, δ]}.

The goal in this subsection is first to show, for a given large K, if δ is suffi-
ciently small, then T has a fixed point on K. In general, δ would depend on K.
Later, after proving the energy estimate in Theorem 3, we will establish a uni-
form bound on E(t) and we will be able to choose K as the a priori bound on
‖J(x, t)− J0(x, t)‖Cα∩L∞∩L2(Ωδ), which depends only on the initial data. As a con-
sequence, δ > 0 can be fixed in terms of the initial data. Hence, one can extend the
existence to ΩT in finite step.

The existence of a fixed point for small δ will be accomplished in several steps.

(i). As before, we consider the far field separately, where the solution of forced wave
equation is smooth due to finite propagation.

At time t = 0, J(x, 0) = θ1(x) + u′0(x) for any function J in K. Furthermore, all
functions in K have uniform Cα, L∞ and L2 bounds. So by a very similar argument
as in the beginning of Section 6.1, we can find a domain Ω0 as in Figure 3, such that
for any function J , the corresponding θJ , solved by the forced wave equation, has
no singularity in the region ΩT /Ω

0. Note that the solution θJ solved by the forced
wave equation is finitely propagating.

The choose of Ω0 depends on both T and K.
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(ii). To apply the Schauder Fixed-Point Theorem, we use the following Banach
space L∗, which includes all functions f in

⋂

p∈[2+σ,∞)

Lp with a finite norm

‖f‖L∗(Ωδ) = sup
p∈[2+σ,∞)

‖f‖Lp(Ωδ) <∞.

Here σ is any given positive constant. It is easy to check that L∗ is a Banach
space. Clearly, K ⊂ L∗ and is bounded, since for any f ∈ K,

‖f‖Lp ≤ max(‖f‖L2 , ‖f‖L∞) < K, p ∈ [2 + σ,∞). (6.35)

This can be easily proved by the Hölder inequality.

Claim: K is a compact set in L∗.

We divide the proof of the claim into two steps.

Step 1: We use Frechet-Kolmogorov theorem ([7,37]) to prove that K is a compact
subset of Lp(Ωδ) for any p ∈ [2 + σ,∞).

We can verify two conditions in Frechet-Kolmogorov theorem as following. For
any p ∈ [2 + σ,∞) and f ∈ K,

(

∫ δ

0

∫

R

|f(x+ a, t+ b)− f(x, t)|p dxdt
)

1
p

≤ ‖f(x+ a, t+ b)− f(x, t)‖lL∞(

∫ δ

0

∫

R

|f(x+ a, t+ b)− f(x, t)|p(1−l) dxdt)
1
p

where p(1 − l) > 2. Because f has a uniformly bounded Cα ∩ L∞ ∩ L2 norm,
‖f(x+ a)− f(a)‖Lp(Ωδ) uniformly approaches zero as a→ 0 in K.

By the same argument as in paragraphs (i), for any ǫ, there exists a constant
r0 > 0 such that, if r > r0, then J(x, t) is less than ǫ for any x > r, 0 ≤ t ≤ δ. So

∫ δ

0

∫

|x|>r
|f |p dxdt ≤ ǫpl

∫ δ

0

∫

R

|f |p(1−l) dxdt ≤ ǫpl(max{‖f‖L2 , ‖f‖L∞})p(1−l),

with p(1 − l) > 2. This shows the uniform convergence of
∫ δ
0

∫

|x|>r |f |p dxdt as r
goes to ∞.

It follows from Frechet-Kolmogorov theorem that K is a compact subset in Lp(Ωδ)
with p ∈ [2 + σ,∞).

Step 2: We show that K is a compact subset in L∗.

In fact, for any bounded set in K, we can find a convergent sequence f1n in L2+σ.
Then in f1n, we can find a convergent sub-sequence f2n converging in L3, then until
any Ln. Now we claim fnn converges in L∗. Clearly, all sub-sequences converge to
the same function f∗ in a.e. sense. Furthermore, since fnn ∈ K, one has ‖fnn‖Lp < K
for p ∈ [2 + σ,∞) by (6.35). Therefore, ‖f∗‖Lp < K for p ∈ [2 + σ,∞), and hence,
f∗ ∈ L∗ with ‖f∗‖L∗ < K. The compactness proof is done, which completes the
proof of the claim.
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(iii). To use the Schauder Fixed-Point Theorem for T on K, we have to prove:

(a). The map T maps from K to itself, for a small time interval (0, δ).
(b). The map T is continuous under the L∗ norm.

Proof of (a). First we show that ‖M(J)(X,Y )‖L∞∩L2(Ωδ) < K. In fact, it is easy to

show that the super norm of u defined in (6.32) is bounded. Then by the L2 bound
of θt in (6.25) and using a similar argument as in Lemma 3.1, we can show that

‖M(J)(x, t) − J0(x, t)‖L∞(Ωδ) < C · δ 1
4 < K

for δ small enough, where C is a constant.
Now we treat the L2 norm of M(J). By (6.32), it is easy to see that u(x, t) is a

weak solution of

ut − uxx = θtx. (6.36)

Similarly, by (6.31), M(J)(x, t) is a weak solution of

Mt −Mxx = c(θ)(c(θ)θx)x − ux − 2θt (6.37)

where the calculation is very similar to (3.4)-(3.8). Then by same arguments as in
Lemma 3.1 and using (6.25), we know

‖M(J)(x, t) − J0(x, t)‖L2(Ωδ) < C · δ 1
4 < K

if δ is small. Here, as before, we get use of the t1/4 power in Lemma 3.1.
Finally, if δ is small, the estimate

‖M(J)(x, t) − J0(x, t)‖Cα(Ωδ) < C · δ 1
4
−α < K

when δ is small enough, can be derived directly from Lemma A.1 in Appendix A.3.

Proof of (b). First recall (θ, z, w, p, q, x, t)(X,Y ) is Lipschitz continuously dependent

on J̃(X,Y ) in the L∞ distance, as discussed in the previous section.
Note, all integrals in M can be written as “nice” equations using θ, z, w, p, q, x, t

and (6.19). For example,

2

∫∫

H(x− y, t− s)θs(y, s)dyds =

∫∫

H̃
pq

4c
(sinw cos2

z

2
− sin z cos2

w

2
) dXdY,

where

H̃ = H(x− y(X,Y ), t− s(X,Y )).

So the continuity of M in super norm can be proved by the Lipschitz continuous
dependence of (θ, z, w, p, q, x, t)(X,Y ) on J in the L∞ distance.

Clearly, the L∞ and L∗ norm are different in the whole domain, but they are the
same in any bounded domain. Thanks to the finite propagation property for (6.1),
we can split the region into Ω0 and the rest, where for any J(x, t) ∈ K, singularity
only happens on Ω0. The continuity of M(J) on J is clear for smooth solutions on
Ω/Ω0. One can use both L2 and L∞ norms estimate to cover the L∗ space. In Ω0,
we know that

‖J2 − J1‖L∞ = lim
p→∞

‖J2 − J1‖Lp ≤ ‖J2 − J1‖L∗ .

Hence, we proved (b).
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Therefore, by (a) and (b), an application of the Schauder Fixed-Point Theorem
gives a fixed point J∗(x, t) ∈ K of T , that is,

M(J∗)(x, t) = J∗(x, t). (6.38)

Finally, let’s fix J = J∗ in (6.38). Then for any 0 ≤ t ≤ δ, by previous results,
we know that,

θt(·, t), θx(·, t) ∈ L2(R) and u, J ∈ L∞ ∩ L2(R× [0, δ]), (6.39)

and by applying standard heat equation theory to (6.36),

u ∈ L2([0, δ],H1(R)), ut ∈ L2([0, δ],H−1(R)).

Furthermore, from

v =

∫ x

−∞
u dz,

one has

vt − vxx = θt,

in the L2 sense by (6.36), which means for any test function φ ∈ C∞
0 (R× [0, δ]),

∫∫

vtφdxdt =

∫∫

(vxx + θt)φdxdt =

∫∫

(ux + θt)φdxdt, (6.40)

where this and also the following integrals are all on R × [0, δ]. By (6.24), we also
know that

∫∫

θtφtdxdt =

∫∫

((c(θ)φ)xc(θ)θx + θtφ+ Jφ) dxdt. (6.41)

Now we are ready to show that

J = vt, a.e..

First notice that for any test function φ ∈ C∞
0 (R × [0, δ]), there exist a function

ψ ∈ C∞
0 (R× [0, δ]) such that

ψt + ψxx + ψ = φ. (6.42)

In fact, ψ can be found by first solving (6.42) with an initial boundary value problem
with zero boundary conditions on some bounded interval containing the support of
φ, then doing an zero extension. By (6.40) and (6.41),

∫∫

vtψt dxdt =

∫∫

(vxx + θt)ψt dxdt

and
∫∫

θtψtdxdt =

∫∫

((c(θ)ψ)xc(θ)θx + θtψ + Jψ) dxdt.

Add above two equations up to get
∫∫

vt(ψt + ψxx) dxdt =

∫∫

((c(θ)ψ)xc(θ)θx + θtψ + Jψ) dxdt.

Furthermore, by (6.37) we mean that
∫∫

J(ψt + ψxx) dxdt =

∫∫

((c(θ)ψ)xc(θ)θx + uxψ + 2θtψ) dxdt.
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Now comparing the above two equations, and using (6.40) and (6.42), we have
∫∫

(J − vt)φdxdt = 0, (6.43)

which shows that J = vt, a.e., and
∫∫

Jφdxdt =

∫∫

(ux + θt)φdxdt, (6.44)

The equation (1.19) is satisfied due to (6.41) and (6.43).
Finally, it follows from (6.44), (6.39) and (6.25) that

ux(x, t) ∈ L∞([0, δ], L2
loc(R)).

The Hölder continuous properties of u and θ in Theorem 2 can be easily shown by
the Sobolev embedding from H1

loc to C
1/2 in one space dimension.

6.4. Energy Estimate. We now prove the energy estimate for the weak solution
established in Section 6.3, which provides the energy estimate in Theorem 2 and
allows an extension of the solution to [0, T ].

Theorem 3. Fix T > 0. For any weak solution of system (1.1) constructed in
Section 6.3, one has, for t ∈ [0, T ],

E(t) ≤ E(0) −
∫∫

R×[0,t]
(v2t + θ2t ) dxdt. (6.45)

Proof. We first consider the bounded domain Dt in the (X,Y )-plane in Figure 5,
and using the corresponding notation (6.26)-(6.27). Recall that D is the region in
the (x, t)-plane transformed from Dt.

We start our proof from inequality (6.30), where J in the last integral can be
replaced by vt, that is,

∫ b

a
(θ2t + c2(θ)θ2x)(x, t) dx ≤

∫ c

d
(θ2t + c2(θ)θ2x)(x, 0) dx

− 2

∫∫

D
θ2t dxdt− 2

∫∫

D
vtθt dxdt.

(6.46)

By (6.44) and the discussion in Section 6.3, we know J = vt = vxx+ θt holds true
in the L2(R× [0, T ]) sense. Thus,

∫∫

D
vtθt dxdt =

∫∫

D
(v2t − vxxvt) dxdt, (6.47)

where vxx, θt, vt ∈ L2(D). Integrating by parts, the second term becomes

−
∫∫

D
vxxvt dxdt =

∫∫

D
vxvxt dxdt+

∫

AD

vxvt√
1 + c2

ds−
∫

CB

vxvt√
1 + c2

ds

=
1

2

∫ b

a
|vx|2(x, t) dx− 1

2

∫ c

d
|vx|2(x, 0) dx

−
∫ t

0
(vtvx)(x

+(t), t) dt −
∫ t

0
(vtvx)(x

−(t), t) dt

(6.48)
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where x+(t) and x−(t) are characteristic DA and CB respectively. Substitute this
identity into (6.47) to get

∫∫

D
vtθt dxdt =

∫∫

D
v2t dxdt+

1

2

∫ b

a
u2(x, t) dx − 1

2

∫ c

d
u2(x, 0) dx

−
∫ t

0
(vtvx)(x

+(t), t) dt−
∫ t

0
(vtvx)(x

−(t), t) dt.

(6.49)

Because vt is uniformly bounded and vx = u ∈ L2,

−
∫ t

0
(vtvx)(x

+(t), t) dt −
∫ t

0
(vtvx)(x

−(t), t) dt → 0 as (a, b) → (−∞,∞).

Taking (a, b) → (−∞,∞) (so (d, c) → (−∞,∞) too) in (6.46) and (6.49), we have

E(t) ≤ E(0) −
∫∫

R×[0,t]
(v2t + θ2t ) dxdt. (6.50)

This completes the proof. �

By Lemma 3.1, we know that the time step δ only depends on the bound of E(t) in
(6.25). The previous theorem gives an a priori bound on E(t), which only depends on
the initial condition. By this piece of information, we know δ is uniformly positive,
so one can obtain a solution on [0, T ] in finite many time steps. Alternatively, one
can choose K larger than the a priori bound on ‖J(x, t) − J0(x, t)‖Cα∩L∞∩L2(ΩT )

only depending on the initial data, then directly find the fixed point for t ∈ [0, T ].
Here there seems to be repetition in our presentation from local to global existence.
We feel this might be helpful for the readers to understand the ideas for this involved
proof. This completes the proof of Theorem 2.

Remark 6.6. If the solution has no energy concentration at time t1, i.e. cosw and
cos z are not −1 or equivalently θt and θx both have no blowup at t1, then for any
t2 ≥ t1,

E(t2) ≤ E(t1)−
∫ t2

t1

∫

R

(v2t + θ2t ) dxdt. (6.51)

In fact, one can still prove it using the same method in the last theorem.
However, if solution has energy concentration at time t1, (6.51) might not be true,

because some energy might be later released from concentration. In this case, one
cannot get the last step of (6.30), where
∫

DC

1− cosw

4
p dX − 1− cos z

4
q dY

>

∫

DC∩(cosw 6=−1)

1− cosw

4
p dX +

∫

CD∩(cos z 6=−1)

1− cos z

4
q dY

=

∫ c

d

1

2
(θ2t + c2(θ)θ2x)(x, t1) dx,

with DC on the curve t = t1.
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Appendix A.

A.1. Derivation of system (2.1). We consider the following form of solutions to
the system (1.10)

u(x, t) = (0, 0, u(x, t))T and n(x, t) =
(

sin θ(x, t), 0, cos θ(x, t)
)T
.

It is easy to see that ∇ · u(x, t) = 0, and u · ∇u = u · ∇n = u · ∇ṅ = 0. Direct
computation implies

D =
1

2
(∇u+∇Tu) =

1

2





0 0 ux
0 0 0
ux 0 0



 ,

ω =
1

2
(∇u−∇Tu) =

1

2





0 0 −ux
0 0 0
ux 0 0



 ,

n⊗ n =





sin2 θ 0 sin θ cos θ
0 0 0

sin θ cos θ 0 cos2 θ



 .

Then

N = ṅ− ωn =

(

θt +
1

2
ux

)

(

cos θ, 0,− sin θ
)T
,

N ⊗ n =

(

θt +
1

2
ux

)





sin θ cos θ 0 cos2 θ
0 0 0

− sin2 θ 0 − sin θ cos θ



 ,

n⊗N =

(

θt +
1

2
ux

)





sin θ cos θ 0 − sin2 θ
0 0 0

cos2 θ 0 − sin θ cos θ



 .

And also

Dn =
1

2
ux
(

cos θ, 0, sin θ
)T
,

nTDn = ux cos θ sin θ,

Dn⊗ n =
1

2
ux





sin θ cos θ 0 cos2 θ
0 0 0

sin2 θ 0 sin θ cos θ



 ,

n⊗Dn =
1

2
ux





sin θ cos θ 0 sin2 θ
0 0 0

cos2 θ 0 sin θ cos θ



 .

Hence
g =γ1N + γ2Dn

=γ1θt
(

cos θ, 0,− sin θ
)T

+
1

2
ux
(

(γ1 + γ2) cos θ, 0, (γ2 − γ1) sin θ
)T
.

Since the last term in Oseen-Frank energy density is null Lagrangian term, without
loss of generalization, we only compute the first three terms. The Oseen-Frank
energy density of this case will be

W (n,∇n) = K1(n
1
x)

2 +K3

(

(n1n1
x)

2 + (n1n3
x)

2
)

=
1

2
θ2x
(

K1 cos
2 θ +K3 sin

2 θ
)

,
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where ni is the i-th component of n. Thus

∂W

∂n
=
(

K3θ
2
x sin θ, 0, 0

)T
,

∂W

∂∇n
=





K1θx cos θ +K3θx sin
2 θ cos θ 0 0

0 0 0
−K3θx sin

3 θ 0 0



 .

The Lagrangian constant

γ =
∂W

∂n
· n+ γ2Dn · n−∇ ·

(

∂W

∂∇n

)

· n− |nt|2

=(K1 + 2K3)θ
2
x sin

2 θ −K1θxx sin θ cos θ + γ2ux sin θ cos θ − |θt|2.
We are ready to derive the system (2.1). We first work on the equation of θ. By the
third equation of (1.10), we have

ntt =θtt
(

cos θ, 0,− sin θ
)T

+ |θt|2
(

− sin θ, 0,− cos θ
)T

=γn− ∂W

∂n
− g +∇ ·

(

∂W

∂∇n

)

=− |θt|2
(

sin θ, 0, cos θ
)T − γ1θt

(

cos θ, 0,− sin θ
)T

+ uxT1 +K1T2 +K3T3.

Then

(θtt + γ1θt)
(

cos θ, 0,− sin θ
)T

= uxT1 +K1T2 +K3T3. (A.1)

Here the vector T1 is given by

T1 =γ2 sin θ cos θ
(

sin θ, 0, cos θ
)T − 1

2

(

(γ1 + γ2) cos θ, 0, (γ2 − γ1) sin θ
)T

=− γ1
2

(

cos θ, 0,− sin θ
)T

+
γ2
2

(

2 sin2 θ cos θ − cos θ, 0, 2 sin θ cos2 θ − sin θ
)T

=
(

−γ1
2

− γ2
2

cos(2θ)
)

(

cos θ, 0,− sin θ
)T
.

(A.2)

The nonzero components of vector T2 is given by

T1
2 =θ

2
x sin

3 θ − θxx sin
2 θ cos θ + (θx cos θ)x

=− sin2 θ(θx cos θ)x + (θx cos θ)x = cos2 θ(θx cos θ)x,

T3
2 =θ

2
x sin

2 θ cos θ − θxx sin θ cos
2 θ = − sin θ cos θ(θx cos θ)x.

So the vector T2 is

T2 = cos θ(θx cos θ)x
(

cos θ, 0,− sin θ
)T
. (A.3)

Similarly, the vector T3 is

T3 = sin θ(θx sin θ)x
(

cos θ, 0,− sin θ
)T
. (A.4)

Plugging (A.2), (A.3) and (A.4) into (A.1), we obtain

θtt + γ1θt = K1 cos θ(θx cos θ)x +K3 sin θ(θx sin θ)x +
(

−γ1
2

− γ2
2

cos(2θ)
)

ux,

which is exactly the second equation in (2.1).
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For the equation of u, direct computation gives

∇ ·
(

∂W

∂∇n
⊗∇n

)

=
(

(K1θ
2
x cos

2 θ)x + (K3θ
2
x sin

2 θ)x, 0, 0
)T

and

∇ · σ =α1

(

(ux sin
3 θ cos θ)x, 0, (ux sin

2 θ cos2 θ)x
)T

+ α2

(

(

(θt +
1

2
ux) sin θ cos θ

)

x
, 0,−

(

(θt +
1

2
ux) sin

2 θ
)

x

)T

+ α3

(

(

(θt +
1

2
ux) sin θ cos θ

)

x
, 0,
(

(θt +
1

2
ux) cos

2 θ
)

x

)T

+
α4

2

(

0, 0, uxx
)T

+
α5

2

(

(ux sin θ cos θ)x, 0, (ux sin
2 θ)x

)T

+
α6

2

(

(ux sin θ cos θ)x, 0, (ux cos
2 θ)x

)T
.

Therefore the first equation of system (1.10) can be written into following three
equations

Px =K1(θ
2
x cos

2 θ)x +K3(θ
2
x sin

2 θ)x + α1(ux sin
3 θ cos θ)x

+
1

2
(α2 + α3 + α5 + α6) (ux sin θ cos θ)x + (α2 + α3)

(

θt sin θ cos θ
)

x
,

(A.5)

Py = 0, (A.6)

ut + Pz =
α4

2
uxx + α1(ux sin

2 θ cos2 θ)x − α2

(

(θt +
1

2
ux) sin

2 θ
)

x

+ α3

(

(θt +
1

2
ux) cos

2 θ
)

x
+
α5

2
(ux sin

2 θ)x +
α6

2
(ux cos

2 θ)x.

(A.7)

By these equations, one can obtain that Pz = a for some constant a. The right hand
side of (A.7) can be rewritten as (g(θ)ux + h(θ)θt)x where g(θ) and h(θ) is defined
as (2.2). Therefore, we obtain the first equation of (2.1).

A.2. Derivation of system (5.9). We will in fact derive the semilinear system in
XY -coordinates for (2.1) with ν = ρ = 1 and a = 0. Recall, from (5.5) and (5.6),
that we have introduced

w = 2arctanR, z = 2arctan S, p =
1 +R2

Xx
, q = −1 + S2

Yx
.

It is easy to have that

R = tan
w

2
,

R

1 +R2
=

1

2
sinw,

1

1 +R2
= cos2

w

2
,

S = tan
z

2
,

S

1 + S2
=

1

2
sin z,

1

1 + S2
= cos2

z

2
.

By (5.4) and (4.2), we have

θX =
sinw

4c
p, θY =

sin z

4c
q.

Denote

U = h(θ)ux.
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By (4.2), we have
{

(S2)t + c(θ)(S2)x = c′

2c(S
3 −R2S)− γ1(RS + S2)− 2SU,

(R2)t − c(θ)(R2)x = c′

2c(R
3 −RS2)− γ1(RS +R2)− 2RU,

(A.8)

so






(S2)X = 1
2cp

1
1+R2

{

c′

2c(S
3 −R2S)− γ1(RS + S2)− 2SU

}

,

(R2)Y = 1
2cq

1
1+S2

{

c′

2c(R
3 −RS2)− γ1(RS +R2)− 2RU

}

.
(A.9)

Hence,

zX = 1
1+S2

1
S (S

2)X

= 1
2cp

1
(1+R2)(1+S2)

{

c′

2c(S
2 −R2)− γ1(R+ S)− 2U

}

=p
{

c′

4c2
(cos2 w

2 − cos2 z
2 )−

γ1
4c (sinw cos2 z

2 + sin z cos2 w
2 )− 1

c cos
2 z
2 cos

2 w
2U
}

.

Similarly,

wY = q
{

c′

4c2
(cos2 z

2 − cos2 w
2 )−

γ1
4c (sinw cos2 z

2 + sin z cos2 w
2 )− 1

c cos
2 z
2 cos

2 w
2 U
}

.

On the other hand, using Xt − cXx = 0, we have

Xtx − cXxx =
c′

2c
(R − S)Xx.

Then

pY = 1
Xx

(R2)Y − q cos2 w
2

2c
1+R2

X2
x
(Xxt − cXxx)

=pq
2c

1
(1+R2)(1+S2)

{

c′

2c(R
3 −RS2)− γ1(RS +R2)− 2RU

}

− pq
2c

c′

2c
R−S
1+S2

=pq
2c

1
(1+R2)(1+S2)

{

c′

2c(−R−RS2)− γ1(RS +R2)− 2RU
}

+ pq
2c

c′

2c
S

1+S2

=pq c′

8c2
(sin z − sinw)− γ1

pq
2c [

1
4 sinw sin z + sin2 w

2 cos2 z
2 ]−

pq
2cU sinw cos2 z

2 .

Similarly, we have

qX = pq c′

8c2 (sinw − sin z)− γ1
pq
2c [

1
4 sinw sin z + sin2 z

2 cos
2 w

2 ]−
pq
2cU sin z cos2 w

2 .

In summary, we have the following system of equations.

θX = sinw
4c p, θY = sin z

4c q

zX = p
{

c′

4c2
(cos2 w

2 − cos2 z
2 )−

γ1
4c (sinw cos2 z

2 + sin z cos2 w
2 )− 1

c cos
2 z
2 cos

2 w
2U
}

wY = q
{

c′

4c2
(cos2 z

2 − cos2 w
2 )−

γ1
4c (sinw cos2 z

2 + sin z cos2 w
2 )− 1

c cos
2 z
2 cos

2 w
2U
}

pY = pq c′

8c2
(sin z − sinw)− γ1

pq
2c [

1
4 sinw sin z + sin2 w

2 cos2 z
2 ]−

pq
2cU sinw cos2 z

2

qX = pq c′

8c2
(sinw − sin z)− γ1

pq
2c [

1
4 sinw sin z + sin2 z

2 cos
2 w

2 ]−
pq
2cU sin z cos2 w

2

where recall that U = h(θ)ux.
Denote J = g(θ)ux + h(θ)θt. Then

U =
h(θ)

g(θ)
(J − h(θ)θt).
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In terms of the variable J , the above system is

θX =
sinw

4c
p, θY =

sin z

4c
q

zX = p
{

c′

4c2 (cos
2 w

2 − cos2 z
2 ) +

h2(θ)
g(θ)

−γ1

4c (sinw cos2 z
2 + sin z cos2 w

2 )−
h(θ)
cg(θ)J cos2 z

2 cos
2 w

2

}

wY = q
{

c′

4c2
(cos2 z

2 − cos2 w
2 ) +

h2(θ)
g(θ)

−γ1

4c (sinw cos2 z
2 + sin z cos2 w

2 )−
h(θ)
cg(θ)J cos2 z

2 cos
2 w

2

}

pY = pq
{

c′

8c2
(sin z − sinw) +

h2(θ)
g(θ)

−γ1

2c (14 sinw sin z + sin2 w
2 cos2 z

2 )−
h(θ)
2cg(θ)J sinw cos2 z

2

}

qX = pq
{

c′

8c2
(sinw − sin z) +

h2(θ)
g(θ)

−γ1

2c (14 sinw sin z + sin2 z
2 cos

2 w
2 )−

h(θ)
2cg(θ)J sin z cos2 w

2

}

(A.10)

where the coefficient h2(θ)
g(θ) − γ1 < 0 by (2.11).

For the special case where γ1 = 2, γ2 = 0 and g(θ) = h(θ) = 1, system (A.10)
reduces to system (5.9).

A.3. Hölder continuity of M(J) in §6.3. First, we consider three types of inte-
grals in the definition of J in (6.31),

Li(x, t) :=

∫

R

H(x− y, t)f(y) dy

Lii(x, t) :=

∫ t

0

∫

R

H(x− y, t− s)g(y, s) dyds

Liii(x, t) :=

∫ t

0

∫

R

Hx(x− y, t− s)f(y, s) dyds.

We first prove the following lemma working generally.

Lemma A.1. If f(x, t) ∈ L∞([0, T ], L2(R)), g(x, t) ∈ L∞([0, T ], L1(R)) or g(x, t) ∈
L∞([0, T ], L2(R)) we have Lj(x, t) is Hölder continuous w.r.t x and t, for all j =
i, ii, iii, with exponent β ∈ (0, 14).

Proof. We only provide the proof of Hölder continuity w.r.t x for Liii, the rest cases
can be proved similarly. For any x1 < x2, it is sufficient to show

∣

∣

∣

∣

∫ t

0

∫

R

Hy(x2 − y, t− s)−Hy(x1 − y, t− s)

(x2 − x1)β
f(y, s)dyds

∣

∣

∣

∣

≤ Constant · t 14−
β
2 ,

(A.11)
for some β ∈ (0, 1). Since

Hx(x, t) = − 1

4
√
π

x

t3/2
exp

(

−x
2

4t

)

,
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Hx(x2 − y, t− s)−Hx(x1 − y, t− s)

= − 1

4
√
π

1

(t− s)3/2

{

(x2 − x1) exp

(

−(x2 − y)2

4(t− s)

)

− (x1 − y)

[

exp

(

−(x2 − y)2

4(t− s)

)

− exp

(

−(x1 − y)2

4(t− s)

)]}

:= I1 + I2.

The integral related to the first term I1 can be estimated as follows
∫ t

0

∫

R

1

(t− s)3/2
(x2 − x1)

1−β exp

(

−(x2 − y)2

4(t− s)

)

|f(y, s)| dyds

≤C
∫ t

0

∫

R

1

(t− s)3/2

(

|x2 − y|1−β + |x1 − y|1−d
)

exp

(

−(x2 − y)2

4(t− s)

)

|f(y, s)| dyds.
(A.12)

By the same argument in (3.9), and choosing 0 < β < 1
8 , the first term in (A.12)

should be controlled by
∫ t

0

∫

R

1

(t− s)3/2
|x2−y|1−β exp

(

−(x2 − y)2

4(t− s)

)

|f(y, s)| dyds ≤ Ct
1
4
−β

2 ‖f‖L∞((0,T ),L2(R)).

(A.13)
For the second term in (A.12)
∫ t

0

∫

R

1

(t− s)3/2
|x1 − y|1−β exp

(

−(x2 − y)2

4(t− s)

)

|f(y, s)| dyds

≤C
(

∫ t

0

∫

R

|x1 − y|2(1−β)

(t− s)9/4−β/2
exp

(

−(x2 − y)2

2(t− s)

)

dyds

)
1
2 (∫ t

0

∫

R

|f(y, s)|2
(t− s)3/4+β/2

dyds

)

1
2

≤C
(

∫ t

0

∫

R

|
√
t− su|2(1−β)

(t− s)7/4−β/2
exp

(

−u
2

2
− x2 − x1√

t− s
u

)

duds

)
1
2 (∫ t

0

∫

R

|f(y, s)|2
(t− s)3/4+β/2

dyds

)

1
2

≤C
(

∫ t

0

∫

R

|u|2(1−β)

(t− s)3/4+β/2
exp

(

−u
(u

2
+
x2 − x1√
t− s

)

)

duds

)
1
2 (∫ t

0

∫

R

|f(y, s)|2
(t− s)3/4+β/2

dyds

)

1
2

≤Ct 14−
β
2 ‖f‖L∞((0,T ),L2(R)),

(A.14)

where x1 − y = u
√
t− s, and

exp

(

−(x2 − y)2

2(t− s)

)

= exp

(

−(x2 − x1 + x1 − y)2

2(t− s)

)

=exp

(

−(x2 − x1)
2

2(t− s)

)

· exp
(

−2(x2 − x1)(x1 − y)

2(t− s)

)

· exp
(

−(x1 − y)2

2(t− s)

)

.

Putting (A.13) and (A.14) into (A.12), it holds
∫ t

0

∫

R

1

(t− s)3/2
(x2 − x1)

1−β exp

(

−(x2 − y)2

4(t− s)

)

|f(y, s)| dyds

≤ Ct
1
4
−β

2 ‖f‖L∞((0,T ),L2(R)).

(A.15)
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On the other hand, by mean value theorem, there exists a ξ ∈ (x1, x2) such that

e
−

(x2−y)2

4(t−s) − e
−

(x1−y)2

4(t−s) =− e
− (ξ−y)2

4(t−s)
ξ − y

2(t− s)
(x2 − x1) ≤ −e−

(x1−y)2

4(t−s)
x1 − y

2(t− s)
(x2 − x1).

Hence for the term related to I2, it holds
∫ t

0

∫

R

1

(t− s)3/2
(x1 − y)2

t− s
(x2 − x1)

1−β exp

(

−(x1 − y)2

4(t− s)

)

|f(y, s)| dyds

≤C
∫ t

0

∫

R

1

(t− s)3/2
(x1 − y)2

t− s

(

|x2 − y|1−β + |x1 − y|1−β
)

exp

(

−(x1 − y)2

4(t− s)

)

|f(y, s)| dyds.
(A.16)

The second term is similar to (3.9) and (A.13)
∫ t

0

∫

R

1

(t− s)5/2
|x1−y|3−β exp

(

−(x1 − y)2

4(t− s)

)

|f(y, s)| dyds ≤ Ct
1
4
−β

2 ‖f‖L∞((0,T ),L2(R)).

(A.17)
For the first term, one has
∫ t

0

∫

R

1

(t− s)3/2
(x1 − y)2

t− s
|x2 − y|1−β exp

(

−(x1 − y)2

4(t− s)

)

f(y, s) dyds

≤C
(

∫ t

0

∫

R

|x2 − y|2(1−β)

(t− s)9/4−d/2

(x1 − y)4

(t− s)2
exp

(

−(x1 − y)2

2(t− s)

)

dyds

)
1
2

·
(
∫ t

0

∫

R

|f(y, s)|2
(t− s)3/4+β/2

dyds

)

1
2

.

(A.18)

Let x2 − y =
√
t− su. Then it holds

∫ t

0

∫

R

|u|2(1−d)

(t− s)3/4+β/2

(x1 − x2 +
√
t− su)4

(t− s)2
exp

(

−(x1 − x2 +
√
t− su)2

2(t− s)

)

duds

≤C
∫ t

0

∫

R

|u|2(1−β)

(t− s)3/4+β/2

(x1 − x2)
4 + (

√
t− su)4

(t− s)2
exp

(

−(x1 − x2 +
√
t− su)2

2(t− s)

)

duds.

(A.19)

It is easy to see

exp

(

−(x1 − x2 +
√
t− su)2

2(t− s)

)

= exp

(

−(x1 − x2)
2

2(t− s)

)

exp

(

−(x1 − x2)u√
t− s

)

exp

(

−u
2

2

)

≤ exp

(

−u
2

2
− (x1 − x2)u√

t− s

)

.

Hence
∫ t

0

∫

R

|u|2(1−β)

(t− s)3/4+β/2
u4 exp

(

−(x1 − x2 +
√
t− su)2

2(t− s)

)

duds

≤
∫ t

0

∫

R

|u|2(1−β)

(t− s)3/4+β/2
u4 exp

(

−u
2

2
− (x1 − x2)u√

t− s

)

duds ≤ Ct
1
4
−β

2 ,

(A.20)
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and
∫ t

0

∫

R

|u|2(1−β)

(t− s)3/4+β/2

(x1 − x2)
4

(t− s)2
exp

(

−(x1 − x2 +
√
t− su)2

2(t− s)

)

duds

=

∫ t

0

∫

R

|u|2(1−β)

(t− s)3/4+β/2

(x1 − x2)
4

(t− s)2
exp

(

−(x1 − x2)
2

2(t− s)

)

exp

(

−u
2

2
− (x1 − x2)u√

t− s

)

duds

≤
∫ t

0

∫

R

|u|2(1−β)

(t− s)3/4+β/2
u4 exp

(

−u
2

2
− (x1 − x2)u√

t− s

)

duds ≤ Ct
1
4
−β

2 .

(A.21)

Putting (A.20) and (A.21) into (A.19), we obtain
∫ t

0

∫

R

|u|2(1−d)

(t− s)3/4+β/2

(x1 − x2 +
√
t− su)4

(t− s)2
exp

(

−(x1 − x2 +
√
t− su)2

2(t− s)

)

duds

≤ Ct
1
4
−β

2 .
(A.22)

Combining (A.22) with (A.17) and (A.18), we have
∫ t

0

∫

R

1

(t− s)3/2
(x1 − y)2

t− s
(x2 − x1)

1−β exp

(

−(x1 − y)2

4(t− s)

)

|f(y, s)| dyds

≤ Ct
1
4
−β

2 ‖f‖L∞((0,T ),L2(R)).

(A.23)

It is easy to see that (A.15) and (A.23) imply (A.24).
Similarly, we can show the Hölder continuity of for Liii in t , and
∣

∣

∣

∣

∫ t

0

∫

R

Hy(x2 − y, t− s)−Hy(x1 − y, t− s)

(t2 − t1)β
f(y, s)dyds

∣

∣

∣

∣

≤ Ct
1
4
−β. (A.24)

The proof of Hölder continuity for other terms are similar, and all bounds include

a factor t
1
4
−β. �
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